

INCLUSION OF CO2 TRANSCRITICAL HEAT-PUMP AND POWER CYCLES IN A MASSIVE ELECTRICITY STORAGE SYSTEM

1st Eur. Seminar on Supercritical CO2 Power Systems | F. Ayachi^a, N. Tauveron^a, T. Tartière^b, D. Nguyen^c, H. Davarzani^d, E. Macchi^e

a :CEA, LITEN – DTBH/SBRT/LS2T, 17 rue des Martyrs Grenoble, 38054, France. b :Enertime, 1 rue du Moulin des Bruyères Courbevoie, 92400, France. c :BRGM Languedoc-Roussillon, 1039 rue de Pinville, 34000 Montpellier, France. d: BRGM, 3 avenue Claude Guillemin, 45060 Orléans, France. e: IMFT, 2 Allée du Professeur Camille Soula, 31400 Toulouse, France.

- State of the art
- SELECO2 Concept
- Thermodynamic Simulations
- Architecture discussion
- Preliminary modeling of the hot storage ground heat exchangers
- Preliminary Ground Storage Model & Transient Coupling with Thermodynamic Cycles
- Conclusion

Electricity storage: State of the art (1)

liten

Ceatech

Maturity	Mature (< 1890's)
Deploiement	200 sites (140 GW)
Efficiency	> 80%
Scale	500 MW – 3 GW // 1 – 100 GWh
Discharge	Few hours – Few days
Expected Life	40 years

Electricity storage: State of the art (2)

Maturity	Commercialised
Deploiement	2 sites (USA) { 290 MW – 2h { 110 MW – 26h > 12 projects
Efficiency	~ 50-55%
Scale	10-400 MW // 0,5-20 GWh
Discharge	1 – 26 hours
Expected Life	30 years

Source : IFPEN

liten

Ceatech

Electricity storage: State of the art (3)

Maturity	Several R&D projects Various fluids and cycles (Ar, CO ₂ ,)
Deploiement	No installed capacity
Efficiency	> 40%
Scale	< 100 MW
Discharge	Few hours – Few days
Expected Life	25 years

Source : IFPEN

- State of the art
- SELECO2 Concept
- Thermodynamic Simulations
- Architecture discussion
- Preliminary modeling of the hot storage ground heat exchangers
- Preliminary Ground Storage Model & Transient Coupling with Thermodynamic Cycles
- Conclusion

ANR Project - SELECO2

Project website: <u>http://seleco2.free.fr/</u>

SELECO₂ Concept (1)

 $\emptyset_{column} \sim 1 \text{ m} / column$, $T_{max} \sim 130^{\circ}C$ Rock conductivity =3,4 W/m.K Charge : Heat-Pump cycle (\geq 8 hours)

<u>1st characteristics</u> : Hot storage medium: in situ rock (granite)

2nd characteristics : CO₂ supercritical

SELECO₂ Concept (2)

- State of the art
- SELECO2 Concept
- Thermodynamic Simulations
- Architecture discussion
- Preliminary modeling of the hot storage ground heat exchangers
- Preliminary Ground Storage Model & Transient Coupling with Thermodynamic Cycles
- Conclusion

Code :

Architecture : single stage Net Power: 1 MW_e Rock Temp : T_{rock_max} = 130°C « Pinch » : upper limit

 $\Delta T_{\min} = \left| T_{\rm CO_2} - T_{\rm rock} \right|_{\min} = 1 \, \mathrm{K}$

Double regenerated

Parametric studies & results (1)

 $\eta_{sys} = \frac{\dot{W_{el}}'}{\dot{W_{el}} + \dot{W_{el}}''}$

- State of the art
- SELECO2 Concept
- Thermodynamic Simulations
- Architecture discussion
- Preliminary modeling of the hot storage ground heat exchangers
- Preliminary Ground Storage Model & Transient Coupling with Thermodynamic Cycles
- Conclusion

Parametric studies & results: architecture discussion (1)

liten Ceatech

Parametric studies & results: architecture discussion (2)

liten Ceatech

• 2-stage ORC system

⇒ Favorable impact on global efficiency: $\eta_a > 58,2\%$

- \Rightarrow Default ? $Q_{reg_ORC} \times 2$
- 2-phase turbine in Heat-Pump
 - ✓ Isentropic efficiency = 75% ?
 - ⇒ Favorable impact on global efficiency: $\eta_g \nearrow 57\% \& \eta_g \nearrow 58,2\% \rightarrow 65\%$

⇒ Default ? Maturity and life of turbine component

- State of the art
- SELECO2 Concept
- Thermodynamic Simulations
- Architecture discussion
- Preliminary modeling of the hot storage ground heat exchangers
- Preliminary Ground Storage Model & Transient Coupling with Thermodynamic Cycles
- Conclusion

- State of the art
- SELECO2 Concept
- Thermodynamic Simulations
- Architecture discussion
- Preliminary modeling of the hot storage ground heat exchangers
- Preliminary Ground Storage Model & Transient Coupling with Thermodynamic Cycles
- Conclusion

Preliminary Ground Storage Model & Transient Coupling with Thermodynamic Cycles - 2

High CPU cost Cross-comparison with Macchi et al.

- Parametric studies at steady-state
- A 1D steady state model of hot storage
 - Taking into account pressure losses
 - Parametric study of pinch value
- \Rightarrow Unfavorable impact on global efficiency
- Architecture discussion ⇒ Favorable impact on global efficiency
- Off-design simulations & Transient multi-D coupling ⇒ Study to be continued
- Other important tasks
 - Turbomachinery design
 - Experimental validation \Rightarrow 1/10 device
 - Economy

Acknowledgments

Agence Nationale de la Recherche (grant ANR-13-SEED-0004)

> Commissariat à l'énergie atomique et aux énergies alternatives 17 rue des Martyrs | 38054 Grenoble Cedex www-liten.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

SELECO₂ Concept (2)

SELECO₂ Concept (2)

