

University of Stuttgart

Institute of Nuclear Technology and Energy Systems

Power cycle calculations and preliminary design of a compact heat exchanger of a scaled down sCO₂-HeRosystem for a PWR glass model at KSG/GfS

KE

M. Straetz, R. Mertz, J. Starflinger

Outline

- Motivation and Aims
- sCO₂-HeRo calculations
- Compact heat exchanger
- Experimental investigation of the CHX
- Summary and Further work

Motivation

- In case of an accident in an nuclear power plant, the decay heat must be transferred reliably from the reactor core to the environment (heat sink)
- Active safety system may possibly not work, because they require electricity for activation or during operation
- New reactor concepts are equipped with passive safety systems and redundant heat sinks, but these can not be retrofitted into existing plants
- Because of that, there was the idea of a self-launching, self-propelling and self-sustaining decay heat removal system with supercritical CO₂ as working fluid → called "sCO₂-HeRo"

sCO₂-HeRo system

 Venker, J.: Development and Validation of Models for Simulation of Supercritical Carbon Dioxid Brayton Cycles and Application to Self-Propelling Heat Removal Systems in BWR. Dissertation, 2015

sCO₂-HeRo Project

- Showing the feasibility of the decay heat removal system in a small-scaled demonstrator for the glass model PWR at GfS
- "Proof-of-Principle" of each component of the sCO₂-HeRo system
- 6 project partners are involved in the EU-project

The project leading to this application has received funding from the *Euratom research and training programme 2014-2018* under grant agreement No 662116.

Objectives

- Perform thermodynamic cycle calculations for a scaled down <u>sCO₂ heat removal system (sCO₂-HeRo) for the glass model PWR
 </u>
- Determination of the optimum cycle parameters \rightarrow excess electricity
- Experimental heat transfer investigations of CHX plates with sCO₂ and condensing steam in the sCO₂-test-loop and a new steam cycle
- Finally, the design and manufacturing ideas of the CHX for the glass model sCO₂-HeRo application

Glass model at GfS

- PWR made of glass
 - Visualize the process
 - Education purpose
- Scale 1:10
- Power 60 kW_{th}
- p_{max} = 2 bar
- 2 loops with steam generators
- Simulated decay heat
 - Between 0 14 kW
 - Steam temperature between
 60 90 °C → depending on
 the simulated decay heat power

sCO₂-HeRo calculations - Glass model

- Approach: Decay heat will be used for the self sustaining of the cycle
- Objective: Maximum generator excess electricity
- Outcome: Optimum cycle parameters (phigh, plow, Tin_Turbine, Tin_Compressor ...)

sCO₂-HeRo calculations II

sCO₂-HeRo calculations III

- Further calculations with modified sCO₂-HeRo cycle
- Excess electricity as a function of p_4 and T_4

sCO₂-HeRo calculations IV

- Determination of the design point
 - Max. pressure high pressure side
 - Max. temperature inlet turbine
- \rightarrow compression-ratio
- \rightarrow power of slave electrical heater

Compact heat exchanger

- Advantages of a compact heat exchanger (CHX)
 - High heat transfer area per volume
 - \rightarrow Retrofitting the CHX into existing power plants
 - CHX plates are bonded modularly by diffusion bonding
 - \rightarrow Homogeneous structure
 - Temperatures up to 900 °C and pressure up to 1000 bar

3) Heatric http://www.heatric.com/he at exchanger performanc e.html. last used 05.2016

3) Nuclear Hydrogen System lab http://cfile3.uf.tistory.com/image/1909034 A5052F5B622FEC0, last used 06,2016

- Advantages of sCO₂ as working fluid near the critical point ($T_c = 31 \text{ °C}$, $p_c = 74 \text{ bar}$)
 - High specific heat c_p
 - High heat-transfer coefficient α \rightarrow high heat transfer
 - Low viscosity n

 \rightarrow low mass flow

 \rightarrow low pressure drop

Compact heat exchanger II

Assumptions for the calculations

− Counter current flow between sCO₂ and H₂O
 → high heat transfer per surface area
 → gravity driven H₂O condensate flow

- No pressure drop in the channels
- Equal amount of sCO₂ and H₂O channels
- Same channel geometry on both sides
- Heat transfer occur only at the top and bottom of the channels

Compact heat exchanger III – Iteration scheme

Compact heat exchanger VI

• Example of calculation results for 3x1 mm channel geometry

 \rightarrow Results must be validated in laboratory scaled experiments at USTUTT

Manufacturing of the CHX plates

- Steps for experimental investigation
 - 1. Two-plate CHX test
 - 2. Determine the glass model CHX
- Provide drafts of the two-plate CHX
 - maximum sCO₂ mass flow of $m'_{sCO2} = 110 \text{ g/s}$
 - maximum steam mass flow of m'_{H2O} = 0.69 g/s
 - plate size at the diffusion bonding device
- As example the plate design for experimental investigation of the 3x1 mm channel geometry
 - Effective channel length: 150 mm
 - Number of channels: 15

Manufacturing of the CHX plates II

3-D print for visualization

3-D print of stacked plates 3x1 mm channel geometry

Detail of the CO₂-test plate 1x1 mm channel geometry

Experimental investigation of the CHX

- Experimental investigation of the CHX plates take place at the SCARLETT test loop and the new build up steam cycle
 - 1. Vacuum-Pump
 - 2. Storage Vessel
 - 3. Membrane-Pump
 - 4. Measurement Devices
 - 5. Evaporator
 - 6. Valves
 - 7. CHX Plates
 - 8. Condenser & Kryostat

Experimental investigation of the CHX II

- Build-up status:
 - Mechanical work \rightarrow finished
 - Electrical work \rightarrow in progress
 - Data acquisition \rightarrow in progress
 - CHX plates \rightarrow in progress
 - * Start of operation: End of 2016 *

Summary

- Thermodynamic sCO₂ cycle calculations were carried out and cycle parameters were determined with respect to the maximum generator excess electricity
- Design of the first CHX-test-plates for the experimental investigations in the steam cycle are completed
- Steam cycle was designed, drafts were provided, components bought and the test loop is under construction

Further work

- Finalize build-up of the steam cycle and data acquisition
- Experimental investigation of the heat transfer in the two-plate CHX
- Manufacturing and testing of the CHX for the glass model in 2017

Thank you!

Marcel Strätz

e-mail Marcel.straetz@ike.uni-stuttgart.de phone +49 (0) 711 685-62125 fax +49 (0) 711 685-62010

University of Stuttgart Institut of Nuclear Technology and Energy Systems - IKE Pfaffenwaldring 31 70569 Stuttgart

Compact heat exchanger IV

- 1. Educated guess of $m_{H2O_{1-i}}$ in each section i (x = 0.5 mm), to calculate the heat transfer coefficients $\alpha_{H2O_{1-i}}$ by Carpenter&Colburn correlation
- 2. Calculation of the heat transfer coefficient α_{CO2} ₁ by Gnielinski and the Nu-number
- 3. Consider the plate thickness s between H_2O and sCO_2 channel and the heat conductivity λ of stainless steel
- 4. Calculation of the heat transmission coefficient k₁ by equation $\frac{1}{k_1} = \frac{1}{a_{H_2O-1}} + \frac{s}{\lambda} + \frac{1}{a_{CO_2-1}}$
- 5. Calculation of the transferred heat Q_1 in discretisation section 1-2 with $Q_1 = k_1 * A_1 * \Delta T$

Compact heat exchanger V

- 6. Calculation of sCO₂ temperature $T_{2 \text{ sCO2}}$ at point 2 with Q_1 and m'_{sCO2}
- 7. Calculation of H_2O condensate from $1 \rightarrow 2$ with Q_1 and the enthalpy of condensation
- 8. Calculation of steam "new" mass flow m_{H2O_2} at point 2 with calculated amount of condensate from 1 \rightarrow 2
- 9. Calculation done for the entire length of the CHX, followed by an iteration process

Back-up

(1) Carpenter & Colburn correlation

Strömung	Nusselt-Zahl	Gültig	keits- eich
Filmkondensation strömender Dämpfe im senkrechten Rohr	$\begin{aligned} \alpha_m &= 0,023 \ \frac{\lambda_F}{\eta_F} \ \dot{m} \sqrt{Pr_F \frac{\rho_F}{\rho_D} \xi} \\ \text{mit} \dot{M} & \text{Massenstrom des Dampfes} \\ A & \text{Strömungsquerschnitt} \\ \xi &= \xi(Re) & \text{Widerstandsbeiwert, z.B. nach} \\ & \text{Blasius } \xi &= \frac{0.3164}{\sqrt[4]{Re_D}} \\ \text{mittlere Massenstromdichte} \end{aligned}$	Re	Pr
	$\dot{m} = \frac{M}{A} = \sqrt{\frac{1}{3}} (\dot{m}_{ein}^2 + \dot{m}_{ein} \dot{m}_{aus} + \dot{m}_{aus}^2)$ $\dot{m}_{ein} \text{ und } \dot{m}_{aus} \text{ sind Massenstromdichten am Ein- bzw Austritt des Rohres.}$ Die Reynoldszahl Re_D ist zu berechnen, als ob kein Kondensat im Rohr sei.		

Back-up

(1) Gnielinski correlation

Strömung

(2) Nußeltzahl

Definition	$Nu = rac{lpha \cdot L}{\lambda_l}$
------------	--------------------------------------

α	Wärmeübergangskoeffizient		
L	charakteristische Länge		
λ_l	Wärmeleitfähigkeit des Fluids		

Back-up

(1) Reynoldszahl

$$Re = rac{
ho \cdot v \cdot d}{\eta}$$

ρ	Dichte
v	Strömungsgeschwindigkeit
d	charakteristische Länge
η	dynamische Viskosität