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Supercritical CO2-Loop for Energy Conversion

V. Dostal, M.J. Driscoll and P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors , MIT-ANP-TR-100 (2004)

Recompression- Brayton cycle
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• Rearrangement of Dittus-

Boelter equation gives:
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Thermophysical properties variations for sCO2
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• 3 commonly used methods to predict heat transfer to sCO2

i) Experiments and correlations derived from them
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Heated pipe flow of sCO2

30.09.2016

Parameter Value

Inner diameter 4.1 mm

Heated length 2.1 m

Mass flux 400 kg/m2s

Heat flux 10~50 kW/m2

Pressure 7.75 MPaqw= 50 kW/m2
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Kim H, Bae Y, Kim H, Soong J and Cho B "Experimental Investigation on the Heat transfer characteristics on a vertical upward flow of supercritical CO2", 

In Proc. ICAPP, Reno, NV., June, 2006.



• 3 commonly used methods to predict heat transfer to sCO2

i) Experiments and correlations derived from them
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Heated pipe flow of sCO2

30.09.2016

Kim H, Bae Y, Kim H, Soong J and Cho B "Experimental Investigation on the Heat transfer characteristics on a vertical upward flow of supercritical CO2", 

In Proc. ICAPP, Reno, NV., June, 2006.
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• 3 commonly used methods to predict heat transfer to sCO2

ii) CFD and DNS studies
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Heated pipe flow of sCO2 and use of CFD

Courtesy: Xu Chu and E. Laurien
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• 3 commonly used methods to predict heat transfer to sCO2

iii) Model based upon heat transfer and fluid dynamics theories
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Heated pipe flow of sCO2  and two layer model

∆𝑇𝑡𝑢𝑟𝑏 =
𝑃𝑟𝑇

𝜅
𝑙𝑛𝑅+𝑏 − 𝑙𝑛𝑦𝑐𝑠

+𝑏 ×
𝑞𝑤

𝜌𝑏𝑐𝑝𝑏𝑢𝜏𝑏

∆𝑇𝑐𝑠 =
𝑞𝑤

1

𝑦𝑐𝑠

 𝑇𝑟𝑒𝑓

𝑇𝑤 𝜆 𝑇 .𝑑𝑇− 𝑇𝑟𝑒𝑓

𝑇𝑐𝑠 𝜆 𝑇 .𝑑𝑇

(𝑇𝑤−𝑇𝑐𝑠)
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• Computer modelling was done in 

MATLAB corresponding to Kim et al. 

experiments

• Good agreement at smaller heat flux

• Heat transfer enhancing effects at 

mid heat flux
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Two layer model

S. Pandey and E. Laurien, Heat transfer analysis at supercritical pressure using

two layer theory, Journal of Supercritical Fluids 109 (2016)

qw= 30 kW/m2

qw= 10 kW/m2
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Two layer model

Positive outcome-

without any supplementary 

correction factor!

S. Pandey and E. Laurien, Heat transfer analysis at supercritical pressure using two layer theory, Journal of Supercritical Fluids 109 (2016)

qw= 50 kW/m2
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Two layer model

S. Pandey and E. Laurien, Heat transfer analysis at supercritical pressure using two layer theory, Journal of Supercritical Fluids 109 (2016)

qw= 50 kW/m2

BUT, shifted and 

exaggerated peak in Tw

Positive outcome-

without any supplementary 

correction factor!
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• Development of an approach to use DNS data in analytical modelling

• Improve fluid flow and heat transfer (heating and cooling) model based 

upon two layer model for sCO2

• Validate proposed model with the available experiments
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Aim of study

30.09.2016
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DNS and its utilization in analytical model development

• Low-Mach incompressible N-S equations in Cartesian Coordinates 

• OpenFOAM V2.4 as solver, FVM

• Semi-implicit P-U coupling, 2-Order Spatial/ temporal

• Tabulated properties library: from NIST

• Parallel computation on HLRS, Stuttgart
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DNS and its utilization in analytical model development

An improved model

Calibrate model 

Development of an initial model

DNS with 

different 

cases

Validate 

model with 
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Inclusion of Buoyancy and Acceleration

Buoyancy

Acceleration

Radial variation 
of properties

shifted and exaggerated 

peak in Tw
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Forced convection (vertical 

orientation) : No buoyancy
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Relaminarization brought by flow acceleration

Heating will 
decrease density

Increase in velocity

Stream wise 
acceleration

Favorable pressure 
gradient

Stabilize the laminar 
sub layer

Reduce the turbulent 
transport
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• Relaminarization brought by 

flow acceleration

• 𝑦𝑣𝑠
+ = 11.8 + 𝑐𝑣𝐾𝑣

• 𝐾𝑣 =
4𝑞+

𝑅𝑒𝐷ℎ

• 𝑞+ =
𝛽𝑞𝑤

𝐺𝑐𝑝

• Empirical fitting with DNS data
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Relaminarization brought by flow acceleration
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• Relaminarization brought by 

flow acceleration

• 𝑦𝑣𝑠
+ = 11.8 + 𝑐𝑣𝐾𝑣

• 𝐾𝑣 =
4𝑞+

𝑅𝑒𝐷ℎ

• 𝑞+ =
𝛽𝑞𝑤

𝐺𝑐𝑝

• Empirical fitting with DNS data

• cv= 107
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Relaminarization brought by flow acceleration

FORCED 

CONVECTION
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• Effects of buoyancy (for heating)

30.09.2016University of Stuttgart – Institute of Nuclear Technology and Energy Systems 20

Effects of buoyancy

g

Upward:

thermally

stable

buoyancy

damps

turbulence

Downward:

thermally

unstable

buoyancy

induces

turbulence

Visualization  of  turbulence structures using the λ2 criterion 

Courtesy: Xu Chu and E. LaurienIntroduction Theory & methodology Results & discussion Summary & Future work



• Effects of buoyancy (for heating)
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Effects of buoyancy

Courtesy: Xu Chu and E. Laurien

Effect
Direction  of 

buoyancy
Flow direction

Effect on 

HT

Additional 

wall shear 

stress

Type of HT

Stable Upward (+) Upward (+) reduce positive

Heating
Unstable Upward (+) Downward (-) intensify negative

Stable Unstable

Density will decrease with 

increase in temperatureflow = +1 flow = -1 
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• Effects of natural convection cannot be ignored. 

• Buoyant shear stress was introduced in the wall shear stress as:

• 𝜏𝑤,𝑚 = 𝜏𝑤 + 𝑓𝑙𝑜𝑤 × 𝜏𝑏 ; 𝜏𝑏 = 𝑦𝑏𝑔(𝜌𝑏 −  𝜌)

• 𝑓𝑙𝑜𝑤 =  

−1, 𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑 (𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒)
0, 𝐹𝑜𝑟𝑐𝑒𝑑 (𝑛𝑜 𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦)
1, 𝑈𝑝𝑤𝑎𝑟𝑑 (𝑠𝑡𝑎𝑏𝑙𝑒)

•  𝜌 =
1

(𝑇𝑤−𝑇𝑏)
 𝑇𝑏
𝑇𝑤 𝜌. 𝑑𝑇 ;            𝑦𝑏 =

𝑦𝑣𝑠

𝑃𝑟𝑐𝑠
1
3
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Effects of buoyancy

Vice versa 

for cooling
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• Upward flow only
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Effects of buoyancy

Upward flow
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Results and discussion

original

• Mean relative error for heat transfer coefficient was improved from

18.34% to 10.65%
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modified
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Validation with cooling of sCO2

• Higher mass flux as 

compared to heat 

flux

• Horizontal orientation

• Heat transfer 

enhancement at 

pseudocritical 

temperature

C. Danga, and E. Hihara, In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental 

measurement, International Journal of Refrigeration 27, Pages 736–747, 2004.
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Comparison with constant property case
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• An approach to use DNS database for analytical modelling

• An initial model is developed for sCO2 that predicts both heat transfer 

and fluid flow 

• Fairly well agreement was observed with experiments, but more 

refinement is needed for future application in power cycle

• Perform more DNS to make model generalize and reliable

• Experimental validation with 2 mm diameter is required
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Summary and future work
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Appendix-A

• Cycle layouts

Ahn et al., Review of supercritical CO2 power cycle technology and current status of research and development, Nuclear

Eng. Technol ogy 47 (2015).
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Appendix-A

• Cycle layouts

Ahn et al., Review of supercritical CO2 power cycle technology and current status of research and development, Nuclear

Eng. Technol ogy 47 (2015).
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Appendix-A

• Condition for figure

Ahn et al., Review of supercritical CO2 power cycle technology and current status of research and development, Nuclear

Eng. Technol ogy 47 (2015).



• Why 60% and 40% 
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Appendix-A

Ahn et al., Review of supercritical CO2 power cycle technology and current status of research and development, Nuclear

Eng. Technol ogy 47 (2015).



• The lambda 2 criterion

• how turbulent structures can be visualized by proper iso-surfaces of 

lambda2

• It identifies vortex cores as pressure minima in a 2-D plane 

perpendicular to the vortex cores
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Appendix-B



Review of correlations

• Shitsman Correlation: 𝑁𝑢𝑏 = 0.023𝑅𝑒𝑏
0.8𝑃𝑟𝑚𝑖𝑛

0.8
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Appendix-C
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Appendix-D

• Effects of buoyancy and acceleration
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Appendix-D

Fidelity of DNS


