

#### Off-design steady-state performance assessment of supercritical CO<sub>2</sub> Brayton cycle for coal-fired power plants

1<sup>st</sup> European Seminar on Supercritical CO<sub>2</sub> Power Systems

Vienna – Austria

Mounir MECHERI – EDF R&D France 2016 September 30<sup>th</sup>



#### **1. INTRODUCTION**

**EDF POSITION** 

**CONTEXT & OBJECTIVES** 

COAL POWER PLANT FLEXIBILITY ?

PART-LOAD CONSEQUENCES

- **2.** PRESSURE BALANCE IN THE CYCLE
- 3. METHODOLOGY
- 4. RESULTS
- **5.** CONCLUSIONS & PERSPECTIVES



# STOR POSITION



- The sCO<sub>2</sub> cycle is an opportunity to:
  Improve power plant efficiency
  Reduce the fossil plant impact
  Enhance renewable heat sources
- Main goals about sCO<sub>2</sub> cycles are to:
  Scale-up the sCO<sub>2</sub> Brayton cycle maturity level
  Prove the sustainability of this technology
  Optimize processes at any load



#### **CONTEXT & OBJECTIVES**





#### Is the sCO<sub>2</sub> Brayton cycle **flexible**?



## COAL POWER PLANT FLEXIBILITY?

- Several ways (non-exhaustive list):
  - □ Full-load power plant + storage (electro-chemical, hydraulic, energy carriers (H<sub>2</sub>)...)
  - Electricity load management (personal consumption, companies...)
- Smart grids Running at part-load □ ... Compressor Recuperator Part-load → modifies the boiler heat duty: **Boiler**  $\square$  CO<sub>2</sub> mass flow = constant  $\rightarrow$  Variation of the Turbine Inlet Temperature (TIT)  $\square$  TIT = constant  $\rightarrow$  variation of the CO<sub>2</sub> mass flow Turbine Heat sink



## CO<sub>2</sub> MASS FLOW VARIATION LEADS TO...



- **1.** INTRODUCTION
- **2.** PRESSURE BALANCE IN THE CYCLE

TURBINE (EXPECTED) OFF-DESIGN BEHAVIOR

PRESSURE BALANCE IN THE CYCLE

COMPRESSOR (EXPECTED) OFF-DESIGN BEHAVIOR → COMPRESSOR MAPS

- **3.** METHODOLOGY
- 4. RESULTS
- **5.** CONCLUSIONS & PERSPECTIVES



#### **TURBINE OFF-DESIGN BEHAVIOR**

• The Turbine Expansion Ratio (TER) is expected to follow the Stodola Ellipse Law [Cooke 1983]:



• The Turbine Isentropic Efficiency (TIE) is expected to follow the Knopf law [Knopf 2012]:







#### COMPRESSOR OFF-DESIGN BEHAVIOR (IGV compressor map)

- Assumptions
  - Pressure ratio: ellipse laws:

*Pressure Ratio* =  $A_1 * \sqrt{B_1 * (1 - C_1 * (mass flow)^2) + D_1} + E_1$ 

Efficiency lines: polynomial laws

Isentropic Efficiency =  $A_2 * (mass flow)^3 + B_2 * (mass flow)^2 + C_2 * (mass flow) + D_2$ 



- **1.** INTRODUCTION
- **2.** PRESSURE BALANCE IN THE CYCLE
- 3. METHODOLOGY

**REFERENCE CASE** 

ASSUMPTIONS

SCENARIOS

- 4. RESULTS
- **5.** CONCLUSIONS & PERSPECTIVES





Part-load performances calculation

(<u>Indicators</u>: electrical power production, & net cycle efficiency)







• Steady-state calculations  $\rightarrow$  **no** transient



- Boiler efficiency variations → not considered
- Pressure drop variations → not considered
- Turbomachines pressure variations = elliptic laws
- Turbomachines efficiency variations = polynomial laws





Scenario 1 (simplified case):

□ CPR  $\rightarrow$  ANL law (Chang et al. 2006)

□ TER = CPR

## ➔ The CO₂ mass flow varies from 60% to 110% of nominal value







#### Scenario 2 (throttle valve):

 $\square$  TER  $\rightarrow$  Stodola ellipse law

□ CPR  $\rightarrow$  ANL law (Chang et al. 2006)

Need to throttle the compressor outlet pressure to fit the TER requirements

➔ The CO<sub>2</sub> mass flow varies from 60% to <u>100</u>% of nominal value





#### Scenario 3 (IGV compressors):

- $\square$  TER  $\rightarrow$  Stodola ellipse
- □ CPR → created IGV compressor map
- → the CO<sub>2</sub> mass flow varies from 60% to 110% of nominal value



- **1.** INTRODUCTION
- **2.** PRESSURE BALANCE IN THE CYCLE
- 3. METHODOLOGY
- 4. **RESULTS**
- **5.** CONCLUSIONS & PERSPECTIVES



## RESULTS



- SC 1: CPR = one curve TER = CPR
- SC 2: TER = Stodola
   CPR = one curve
   Pr. Control = throttle
- SC3: TER = Stodola
   CPR = IGV
- SC1 = non realistic
- SC2 = high losses
- SC3 =
  - better than SC2
  - and more realistic than SC1



- **1.** INTRODUCTION
- **2.** PRESSURE BALANCE IN THE CYCLE
- 3. METHODOLOGY
- 4. RESULTS
- **5.** CONCLUSIONS & PERSPECTIVES



#### **CONCLUSION & DISCUSSIONS**

- Lot of assumptions  $\rightarrow$  must be checked in a more detailed analysis
- Lack of information
  - turbine off-design behavior
  - compressor off-design maps

➔ Need for real turbomachinery test and model validations !

- Conclusions in these modeling conditions:
  - □ Single operational curve compressor → unsuitable to follow TER
  - □ Throttling compressor control → very large losses
  - $\square \rightarrow$  IGV compressors = proper operational pressure range + minimal losses at off-design
  - Off-design performances [SC3 IGV compressors] from 80% to 110% of nominal mass flow:
    - \* Power production: from ~50% to 120% of nominal value
    - \* Cycle net efficiency: [40% 46.8%]



#### PERSPECTIVES

- Concerning previous results:
  - Consolidate the assumptions/hypothesis
  - Improve the current models
  - Compare the off-design performances
- Ongoing studies: general dynamic model
  - Dymola modeling of the global power plant
  - Including transient phenomenon
  - Start and stop
  - Instrumentation and control
  - □ Power plant layout → accurate pressure drops model
  - $\square$  Turbomachine off-design methods  $\rightarrow$  velocity triangle modification with mass flow



# Thank you for your attention

Contact: mounir.mecheri@edf.fr



#### REFERENCES

[Angelino 1968] G. Angelino; Carbon dioxide condensation cycles for power production; J Eng Gas Turbo Power, 89 (2); pp. 229–237; 1968

[Balje 1981] O.E. Balje; Turbomachines: A Guide to Design, Selection, and Theory, John Wiley & Sons, Inc.; 1981

[Chang et al. 2006] Y. I. Chang, P. J. Finck and C. Grandy; Advanced Burner Test Reactor Preconceptual Design Report, (ARGONE National Laboratory); Sept. 2006

[Choi et al. 2013] S. R. Choi, S. O. Kim and T. H. Lee; Off-Design Performance Analysis of the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor; May 2013

[Cooke 1983] D. H. Cooke; Modelling of off-Design Multistage Turbine Pressures by Stodola's Ellipse; Bechtel Power Corporation: Houston, TX; 1983

[Dyreby et al. 2013] J. J. Dyreby, S. A. Klein, G. F. Nellis and D. T. Reindl; Modeling off-design and part-load performance of supercritical carbon dioxide power cycles; June 2013

[Dostal 2004] V. Dostal; A supercritical carbon dioxide cycle for next generation nuclear reactors; [Ph.D. thesis] Department of Nuclear Engineering, Massachusetts Institute of Technology (MIT) (2004)

[Endale Turie 2011] S. Endale Turie; Gas Turbine Plant Modeling for Dynamic Simulation; Master's Thesis; KTH; Oct. 2011

[Gong et al. 2006] Y. Gong, N. A. Carstens, M. J. Driscoll and I. A. Matthews; Analysis of Radial Compressor Options for Supercritical CO<sub>2</sub> Power Conversion Cycles, MIT; June 2006

[Hanak et al. 2015] D. P. Hanak, C. Biliyok and V. Manovic; Evaluation and Modeling of Part-Load Performance of Coal-Fired Power Plant with Postcombustion CO<sub>2</sub> Capture; May 2015

[Knopf 2012] F. C. Knopf; Modeling, Analysis and Optimization of Process and Energy Systems; Wiley: Hoboken, NJ; 2012

[Lee et al. 2014] J. Lee, Y. Ahn, H. Y. Jung, S. G. Kim and J. I. Lee; Off design performance of compressors of 150MWe sCO<sub>2</sub> Cycle for Sodium Cooled Fast Reactor; May 2014

[Le Moullec, 2012] Conceptual study of a high efficiency coal-fired power plant with CO<sub>2</sub> capture using a supercritical CO<sub>2</sub> Brayton cycle. Energy 2013;49:

[Liebenthal et al. 2011] U. Liebenthal and A. Kather; Design and Off-Design Behaviour of a CO<sub>2</sub> Compressor for a Post-Combustion CO<sub>2</sub> Capture Process; May 2011

[Mecheri, Le Moullec 2016] M. Mecheri and Y. Le Moullec; Supercritical CO<sub>2</sub> Brayton cycles for coal-fired power plants; Energy, Volume 103, Pages 758–771, May 2016

[Noall et al. 2014] J. S. Noall (Barber-Nichols Inc.) and J. J. Pasch (SANDIA N.L.); Achievable Efficiency and Stability of Supercritical CO<sub>2</sub> Compression Systems; Sept. 2014

[Tse, Neises 2016] L. Tse and T. Neises; Analysis and optimization for off-design performance of the recompression sCO<sub>2</sub> cycles for high temperature CSP applications; The 5<sup>th</sup> International Symposium – Supercritical CO<sub>2</sub> Power Cycles March 29–31, 2016, San Antonio, Texas

