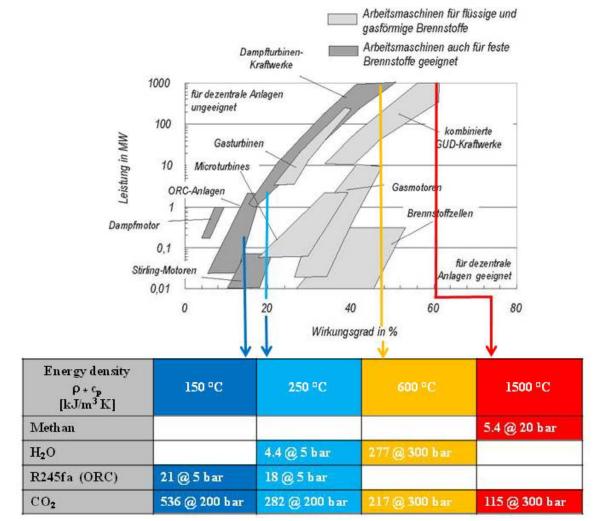


Faculty of Mechanical Engineering, Chair of Thermal Power Machinery and Plants

Supercritical CO_2 (s CO_2) as alternative working fluid for wide range of operating temperature – turbomachinery design aspects

<u>Uwe Gampe</u>, Jasmin Lückert, Guntram Buchheim, Mario Raddatz


1st European Seminar on sCO₂ Power Systems Vienna, 28-30 September 2016

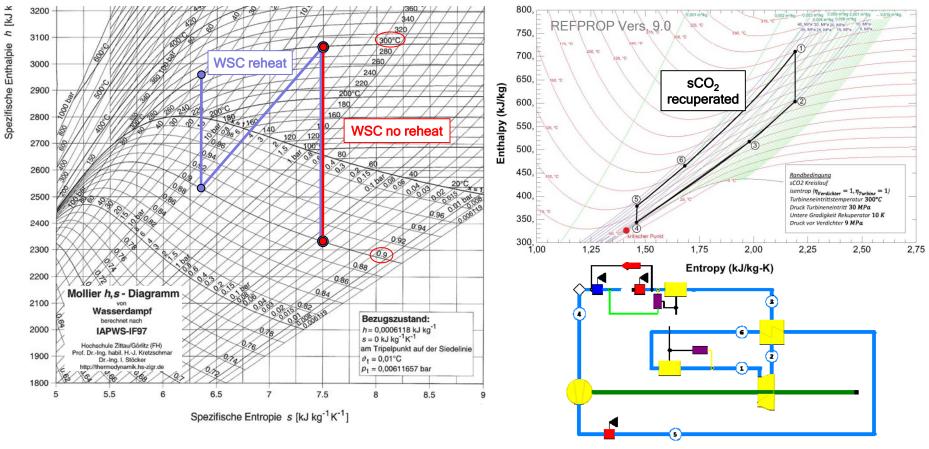
- 1. Introduction
- 2. Comparison of thermodynamic cycles
- 3. Turbine size comparison study
- 4. Other machinery related aspects and development needs
- 5. Integrated concept for turbine/generator arrangement
- 6. Summary

Existing power generation technologies and potential of sCO₂ as alternative working fluid

Range of application of power plant technologies

Ref.: Karl, J. (2012). Dezentrale Energiesysteme. Oldenbourg Verlag München.

Comparison of energy density of working fluids at turbine inlet

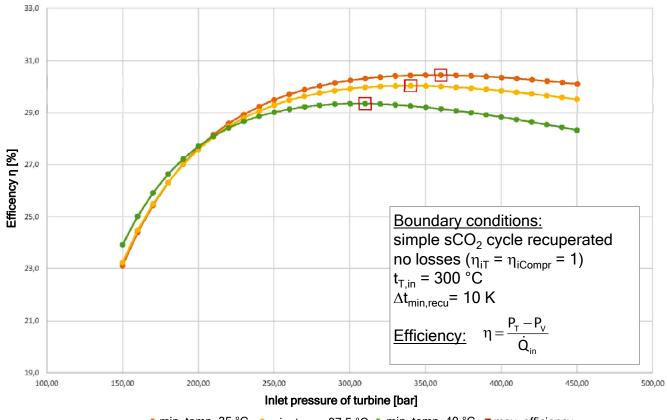


- Transformation processes in the European power generation sector characterized by
 - smaller units (distributed power generation),
 - higher location independence (distributed power generation) and
 - higher operational flexibility
- Supercritical CO₂ as alternative working fluid opens up new opportunities to meet the changing requirements profile.
- Supercritical CO₂ enables to cover a much wider operating range with the same fluid and at high efficiency.

→ Opportunity of stepwise development starting with lower fluid pressure, temperature (reducing development risks)
 → Waste heat recovery (WHR), exhaust heat recovery (EHR)

sCO₂ vs. water steam cycles (WSC):

Example for comparison of thermal efficiency η_{th} for perfect cycles WHR/ EHR application with max. cycle temperature 300 °C



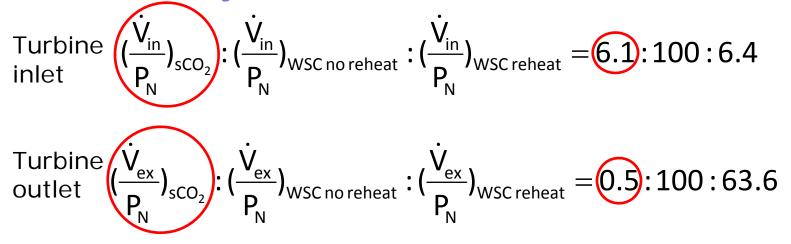
sCO₂ as alternative working fluid – turbomachinery design aspects

Recuperated sCO₂ cycle:

Optimum turbine inlet pressure for perfect cycle max. cycle temperature 300 °C

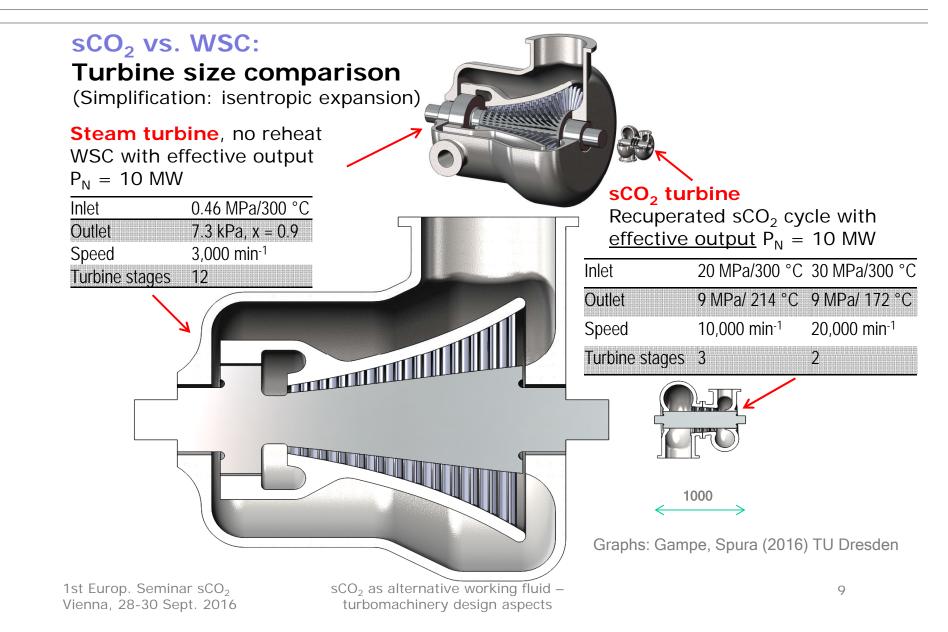
sCO₂ vs. water steam cycles (WSC):

Example for comparison of thermal efficiency η_{th} for perfect cycles Max. cycle temperature 300 $^\circ\text{C}$


Cycle	Fluid parameters	η _{th}
WSC, no reheat	$p_{in} = 0.46 \text{ MPa}$ $p_{ex} = 7.3 \text{ kPa}, x = 0.9$	25.2 %
WSC, reheat	$p_{in} = 4.1 \text{ MPa}, p_{reheat} = 0.46 \text{ MPa}$ $t_{reheat} = 300 \text{ °C}$ $p_{ex} = 7.3 \text{ kPa}, x = 0.9$	34.5 %
sCO ₂ recuperated		29.3 %

sCO₂ vs. WSC:

Comparison of mass flow rate for same effective output P_N $(\frac{\dot{m}}{P_N})_{sCO_2}: (\frac{\dot{m}}{P_N})_{WSC no reheat} : (\frac{\dot{m}}{P_N})_{WSC reheat} = 1015:100:64$


Comparison of volume flow rates for same effective output and flow velocity

1st Europ. Seminar sCO₂ Vienna, 28-30 Sept. 2016 sCO₂ as alternative working fluid – turbomachinery design aspect

Turbine size comparison study

Thrust and radial bearings

Technology	Survey	References
Gas foil	 Small turbomachines (< 3 MW, <u>></u> 30,000 rpm) Working fluid as lubricant, lower viscosity than oil 	[1]
	 Test loops like those of Sandia supporting also gas foil bearing development 	[2]
	 Gas foils → promising solution for high temperature sCO₂ turbomachinery application, so far no experience for application with sCO₂ 	[3]
Hydrodynamic	 Medium/ large turbomachines (> 3 MW, < 30,000 rpm) Necessary separation of the lubricant oil from working fluid 	[1]
Magnetic	Medium turbomachines (1 - 20 MW, 30,000 – 10,000 rpm)	[1]
Hydrostatic	Medium/ large turbomachines (> 20 MW, <u><</u> 10,000 rpm)	[1]

- [1] Musgrove et al. (2015). Fundamentals of Supercritical CO₂. Panel session of ASME Turbo Expo 2015. Montreal.
- [2] Wright et al. (2011). Overview of Supercritical CO₂ Power Cycle Development at Sandia National Laboratories. Univ. Turbine Systems Research Workshop. Columbus/ Ohio. Oct. 2011.
- [3] Thatte (2011). Performance and Life Characteristics of Hybrid Gas Bearing in a 10 MW Supercritical CO₂ Turbine. Proc. of ASME Turbo Expo 2016, GT2016-57695. Seoul.

1st Europ. Seminar sCO ₂	sCO ₂ as alternative working fluid –	10
Vienna, 28-30 Sept. 2016	turbomachinery design aspects	

Inner and outer seals

Technology	Survey	References
Labyrinth seals	 Application of labyrinth seals in compressor of the Sandia sCO₂ test loop Test facility at UW-Madison for measurement of leakage rate through labyrinth seals and for validation of numerical simulation data Geometry parameter studies for design of labyrinth seals for sCO₂ application 	[4]
Dry gas seals (DGS)	 Investigation of the influence of fluid behaviour near critical point on design and performance of DGS Challenge: Dynamic instabilities arising from sonic transition in thin sCO₂ films of DGS 	[5, 6]

 [4] Yuan et al. (2014). Experiment and Numerical Study of Supercritical Carbon Dioxide Flow Through Labyrinth Seals. 4th Int. Symposium – Supercritical CO₂ Power Cycles. Pittsburgh/ Pennsylviania. Sept. 2014.

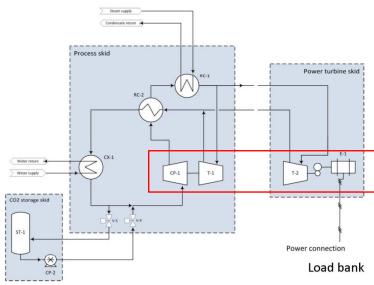
[5] Zakariya and Jahn (2016). Performance of Supercritical CO₂ Dry Gas Seals Near the Critical Point. Proc. of ASME Turbo Expo 2016, GT2016-56537. Seoul.

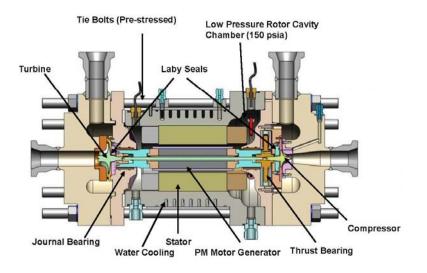
[6] Thatte and Dheeradhada (2016). Coupled Physics Performance Predictions and Risk Assessment for Dry Gas Seal Operating in MW-Scale Supercritical CO₂ Turbine. Proc. of ASME Turbo Expo 2016, GT2016-57670. Seoul.

Material aspects

Survey	References
Key components from materials point of view = components subjected to high pressure and temperature \rightarrow turbine, heater(s)	e.g. [7]
High-temperature strength and corrosion resistance as most important criterias for material selection	
Corrosion resistance of candidate materials in sCO ₂ mainly depending on operating temperature, sCO ₂ purity and alloying elements	[7, 8, 9, 10]
Little information on corrosion behaviour of candidate materials for higher temperatures (> 600 $^{\circ}$ C), Ongoing corrosion tests	[9, 10, 11, 12]

[7] Wright et al. (2013). Materials Considerations for Supercritical CO₂ Turbine Cycles. Proc. of ASME Turbo Expo 2013, GT2013-94941. San Antonio.


[8] Musgrove et al. (2015). Fundamentals of Supercritical CO₂ Panel session of ASME Turbo Expo 2015. Montreal. June 2015.


- [9] Saari et al. (2014). Corrosion Testing of High Temperature Materials in Supercritical Carbone Dioxide. 4th Int. Symposium Supercritical CO₂ Power Cycles. Pittsburgh/ Pennsylviania. Sept. 2014.
- [10] Pint and Keiser (2014). The Effect of Temperature on the s CO₂ Compatibility of Conventional Structural Alloys. 4th Int. Symposium Supercritical CO₂ Power Cycles. Pittsburgh/ Pennsylviania. Sept. 2014.
- [11] Lee et al. (2014). Compatibility of Candidate Materials in High-Temperature s CO₂ Environment. 4th Int. Symposium Supercritical CO₂ Power Cycles. Pittsburgh/ Pennsylviania. Sept. 2014.
- [12] Mahaffey et al. (2014). Materials Corrosion in High-Temperature Supercritical Carbone Dioxide. 4th Int. Symposium Supercritical CO₂ Power Cycles. Pittsburgh/ Pennsylviania. Sept. 2014.

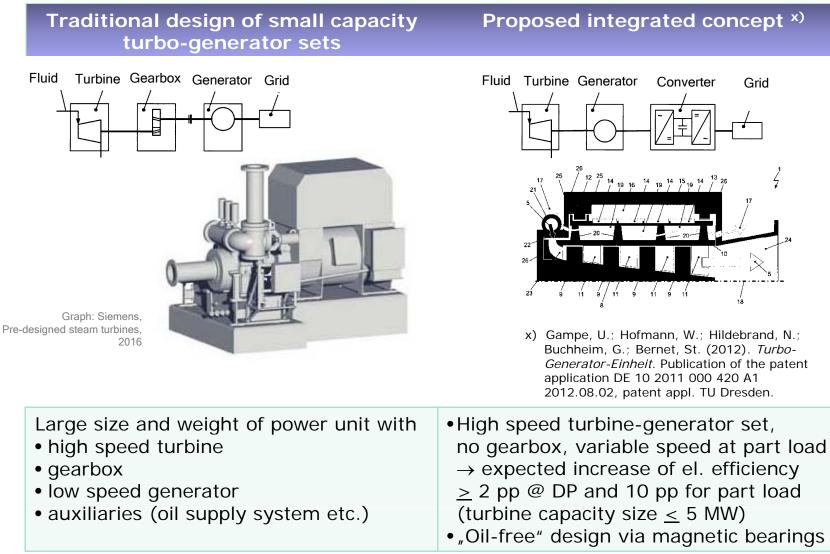
Other machinery related aspects and development needs

Selected machinery train concepts (simple recuperated sCO₂ cycle)

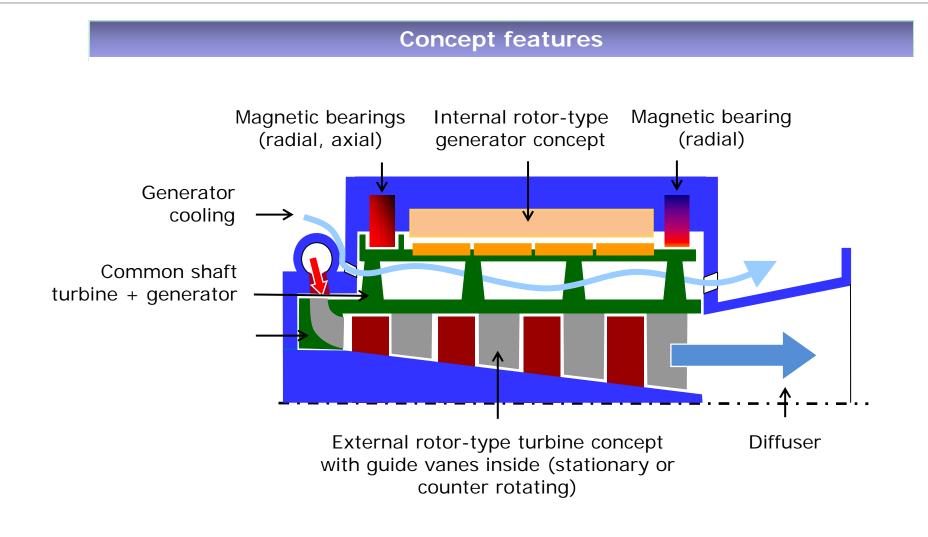
Source: Held (2014). Initial Test Results of a MW-Class Supercritical CO_2 Heat Engine. 4th Int. Symposium - Supercritical CO_2 Power Cycles. Pittsburgh/ Pennsylviania. Sept. 2014.

Echogen EPS100

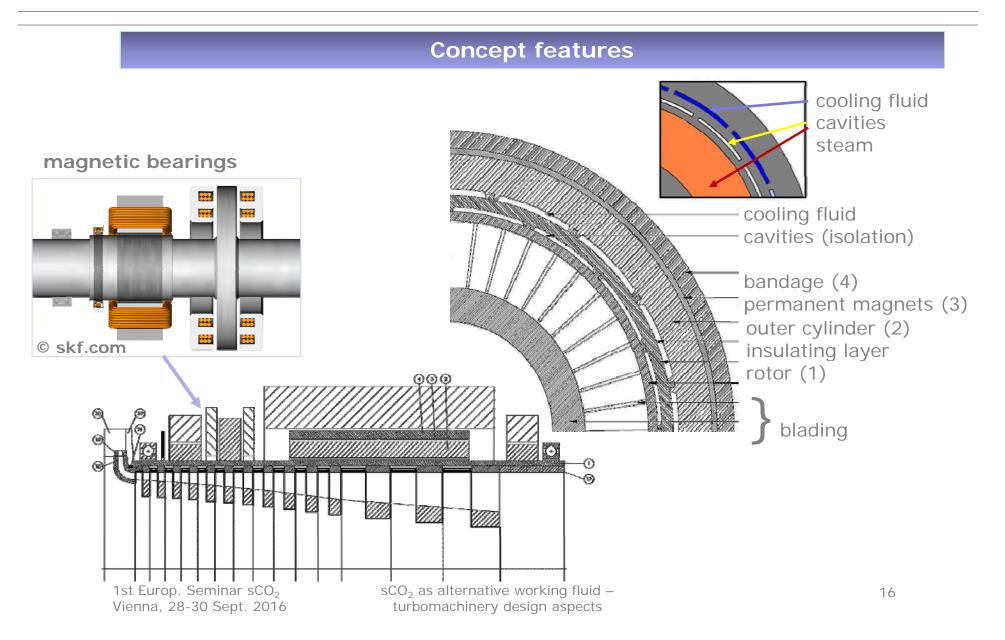
Heat recovery engine 7.3 MW net Twin-shaft concept: var. speed compressor-turbine-unit; const. speed power turbine (30,000 rpm) + gearbox & synchronous gen. (1800 rpm) Source: Wright et al. (2011). Overview of Supercritical CO_2 Power Cycle Development at Sandia National Laboratories. Univ. Turbine Systems Research Workshop. Columbus/ Ohio. Oct. 2011.


Sandia test loop

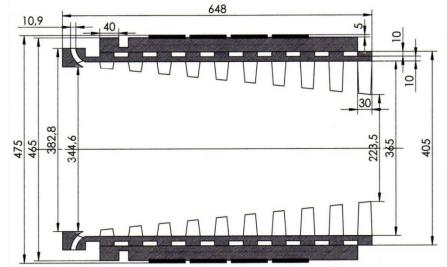
125 kW, 75,000 rpm Single-shaft concept with permanent magnet generator in centre arrangement


1st Europ. Seminar sCO₂ Vienna, 28-30 Sept. 2016

Integrated concept for turbine/generator arrangement

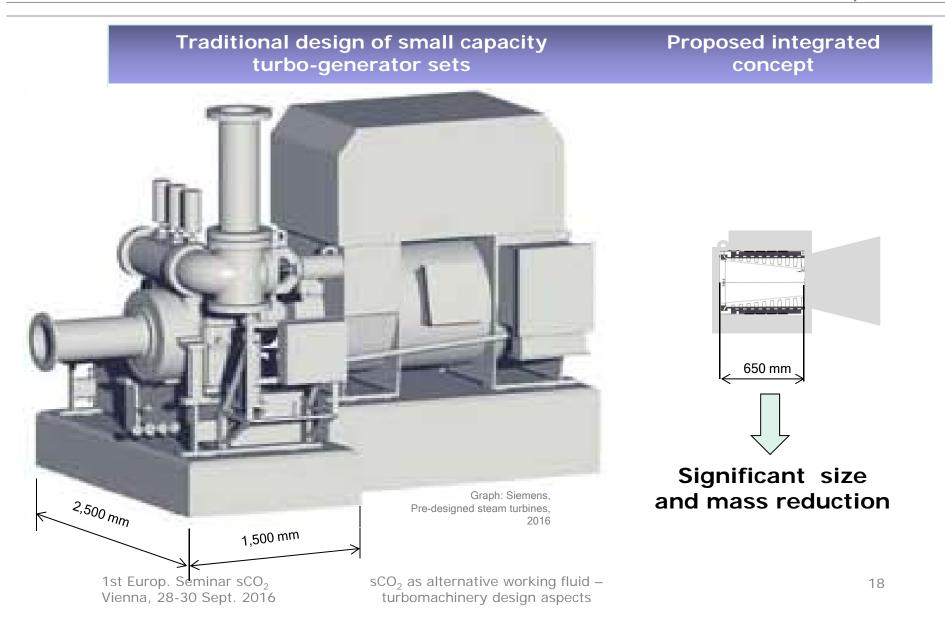


Integrated concept for turbine/generator arrangement


Concept study of backpressure turbine with integrated generator (WSC)

Boundary conditions:

- Life steam: 50 bar(a), 450 °C, 30,000 kg/h
- Backpressure: 3 bar(a)
- Speed: 10,000 rpm
- Output: 5,000 kW (decentralized feed into low-voltage grid) (additional technical limitations of frequency conversion to 50 Hz for higher output)


Result:

- Length (without diffuser): 650 mm
- Outer diameter (without outer casing): 500 mm

Integrated concept for turbine/generator arrangement Turbine size comparison

Technical challenges

- Thermal decoupling of the mechanically coupled system:
 - limitation of thermal loading of the permanent magnets of generator
 - low heat flow turbine generator
 - 3D blading design
 - thermal-mechanical behaviour and long-term reliability
- Rotor dynamics at part load
- Short-circuit torques
- Long-term performance of permanent magnets due to heating up (heat flow turbine generator, electrical fields)

- Trend to more distributed power generation

 → demand for smaller units of high efficiency and flexibility
- Alternative cycles with sCO₂ as working fluid are promising due to high efficiency and energy density.
- Small-scale units are advantageous for greater location independence.
- Thermal efficiency of a recuperated sCO₂ cycle is about 4 pp higher than the one of a simple water steam cycle (no reheat) for turbine inlet temperature of 300 °C (example for heat recovery application)
- Although mass flow rate for same effective power is by factor 10 higher for sCO₂, turbine inlet/outlet volume flow rates are by factor 0.06/0.005 lower resulting in much smaller turbine size.
- High-temperature strength and corrosion resistance in sCO₂ environment are most important criteria for selection of materials.
- Higher energy density resp. size reduction of mechanical components should necessarily be accompanied by the same of electrical components (motor/generator).
- The vision of an **integrated concept** for turbine/generator arrangement as presented is promising for size reduction, but technologically challenging.

Thank you for listening.

1st Europ. Seminar sCO₂ Vienna, 28-30 Sept. 2016 sCO₂ as alternative working fluid – turbomachinery design aspects