

Parametric Evaluation of S-CO2 Brayton Cycles for Waste Heat Recovery Applications

Giovanni Brighenti, Eduardo Anselmi, Pavlos Zachos

Propulsion Engineering Centre Cranfield University, United Kingdom

1st European Seminar on Supercritical CO2 (sCO2) Power Systems 29th-30th of September 2016 Vienna - Austria

www.cranfield.ac.uk

Agenda

- Objectives study
- Cycles
- Methodology
- Results
- Conclusions

s-CO₂ heat recovery cycles Objectives

s-CO₂ heat recovery cycles Objectives

For retrofitting existing gas turbine power plants there two contrasting objectives for the bottoming cycle:

This study therefore focuses on the comparison of established $s-CO_2$ cycles on the base of the heat exchanger UA and the power output.

s-CO₂ cycles Simple Brayton

Entropy (kJ/kg-K)

s-CO₂ cycles Recompressed Brayton cycle

s-CO₂ cycles Nested Brayton cycle

Entropy (kJ/kg-K)

s-CO₂ cycles Dual split nested Brayton cycle

Entropy (kJ/kg-K)

s-CO₂ cycles

Simple recuperated Brayton cycle

Nested Brayton cycle

Recompressed Brayton cycle

Dual split nested Brayton

Methodology Cycle simulation platform

• Post processing and graphs

UA calculations for the heat exchangers are first order backward difference discretization of the energy equation

[1] Span, R., and Wagner, W., "A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa," Journal of Physical and Chemical Reference Data, vol. 25, Nov. 1996, pp. 1509–1596.

Methodology Assumptions & design space exploration

When comparing the cycles the following assumptions are made:

- No mechanical losses are accounted for •
- Coolant circulation pumping power is not accounted for in performance calculations ٠

	Variable [Unit]	Value
	Gas turbine exhaust gas temperature [K]	740
	Gas turbine exhaust gas mass flow [kg/s]	100
	Inlet compressor pressure [MPa]	7.5
	Inlet compressor temperature [K]	305
	Compressor isentropic efficiency [-]	0.87
	Compressor delivery pressure (Max cycle pressure) [MPa]	22
	Turbine isentropic efficiency [-]	0.85
	Heat exchanger effectiveness [-]	0.9
	Coolant inlet temperature [K]	300
Design space exploration across a farige of:		0.02
• (Ogmass flow [80-200] kg/sressure loss coefficient [-]	0.01
<u> </u>		

CO2 mass flow splits for the recompressed, nested and dual split nested cycle [0.1-0.9] 11

Cycle performance against the simple recuperated cycle

- Dual split nested cycle achieves 45% higher Net power with 57% higher waste waste heat recovery compared to the simple recuperated cycle
- The recompressed cycle under performs the simple cycle

Thermodynamic dimension comparison

- The UA in the dual split nested cycle increases by **109.5% for the main HE, 313.5% for the recuperator and 78% for the cooler** devices compared to the simple cycle, the main increase in UA is in the recuperation process
- The UA in the nested cycle increases by 47.3% for the main HE, 1% for the recuperator and 50.2% for the cooler device compared to the simple cycle, the main increase in UA is in the cooling process

Coolant mass flow requirement comparison

Coolant inlet (288.15 K) and outlet temperature (293.15 K) are fixed, the coolant mass flow requirement is calculated, to comply environmental limitations for water cooled power plants

Conclusions

The dual split nested cycle:

- Achieves the higher power output (10 MW)
- Need very high UA (161% higher than the simple cycle) and coolant mass flow therefore the expected highest footprint.

The **recompressed cycle** for heat recovery applications is outcompeted for both total UA and power output by all cycles.

The **nested cycle**:

- Achieves 10% higher power output than the simple cycle
- 33% higher total UA than the simple cycle

The **simple recuperated cycle** was found to require physically more compact heat exchanger configurations at modest net power output

www.cranfield.ac.uk

T: +44 (0)1234 750111

- 💓 @cranfielduni
- @cranfielduni
- 仔 /cranfielduni

$$(h_{c,n})^{i} = (h_{c,n-1})^{i-1} + \frac{UA}{m_{c}} * (T_{h,n} - T_{c,n})^{i-1}$$

= n=node
i=iteration
h= hot stream
c= cold stream

