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s-CO, heat recovery cycles
Objectives

For retrofitting existing gas turbine power plants there two contrasting
objectives for the bottoming cycle:
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This study therefore focuses on the comparison of established s-CO,
cycles on the base of the heat exchanger UA and the power output.
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Temperature (K)

s-CO, cycles

Recompressed Brayton cycle
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s-CO, cycles
Nested Brayton cycle
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1000.

s-CO, cycles

Dual split nested Brayton cycle
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Methodology
Cycle simulation platform

*  Fluid Thermodynamic and
Transport Properties Database
and Includes a thermo-physical
properties database for CO,

* Span and Wagner
equation of state[1]

* Simulink®

* Cycle and component models
» Ideal for passing from design point simulations to part load

simulations

» Controlling simulations with other software tools
* Post processing and graphs

UA calculations for the heat exchangers are first order backward difference discretization of the
energy equation

[1] Span, R., and Wagner, W., “A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point
Temperature to 1100 K at Pressures up to 800 MPa,” Journal of Physical and Chemical Reference Data, vol. 25, Nov. 1996,

pp. 1509-1596.
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Methodology

Assumptions & design space exploration

When comparing the cycles the following assumptions are made:
 No mechanical losses are accounted for
» Coolant circulation pumping power is not accounted for in performance calculations

Gas turbine exhaust gas temperature [K] 740
Gas turbine exhaust gas mass flow [kg/s] 100
Inlet compressor pressure [MPa] 7.5
Inlet compressor temperature [K] 305
Compressor isentropic efficiency [-] 0.87
Turbine isentropic efficiency [-] 0.85

Heat exchanger effectiveness [-] 0.9
Coolant inlet temperature [K] 300

MHE:X pressure loss caefficient [-] 0.02




Cycle performance against the simple
recuperated cycle

CO, mass Waste Heat Specific

Cycle Layout flow rate Recovered power Net power
. 117 kg/s 27.2 MW 60.3 kJ/kg 7.0 MW
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Recompressed Nested Dual split nested
» Dual split nested cycle achieves 45% higher Net power with 57% higher waste waste heat recovery

compared to the simple recuperated cycle
* The recompressed cycle under performs the simple cycle
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Thermodynamic dimension comparison
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 The UAn the dual split nested cycle increases by 109.5% for the main HE, 313.5% for the
recuperator and 78% for the cooler devices compared to the simple cycle, the main increase in
UAis in the recuperation process

 The UAn the nested cycle increases by 47.3% for the main HE, 1% for the recuperator and
50.2% for the cooler device compared to the simple cycle, the main increase in UAis in the cooling

rocess
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Coolant inlet (288.15 K) and outlet temperature (293.15 K) are fixed, the
coolant mass flow requirement is calculated, to comply environmental

limitations for water cooled power plants
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The dual split nested cycle:

» Achieves the higher power output (10 MW)

 Need very high UA (161% higher than the simple cycle) and
coolant mass flow therefore the expected highest footprint.

The recompressed cycle for heat recovery applications is
outcompeted for both total UA and power output by all cycles.

The nested cycle:
» Achieves 10% higher power output than the simple cycle
» 33% higher total UA than the simple cycle

The simple recuperated cycle was found to require physically

more compact heat exchanger configurations at modest net power
output
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n=node
I=iteration

h= hot stream
c= cold stream

Water inlet

CO2 inlet

Water inlet
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