

Comparison of Conventional and CO₂ Power Generation Cycles for Waste Heat Recovery

1st European Seminar on Supercritical CO₂ (sCO₂) Power Systems 28.-30. September 2016 - Vienna - Austria S. Flegkas, G. Klemencic M. Haider, A. Werner, H. Leibinger

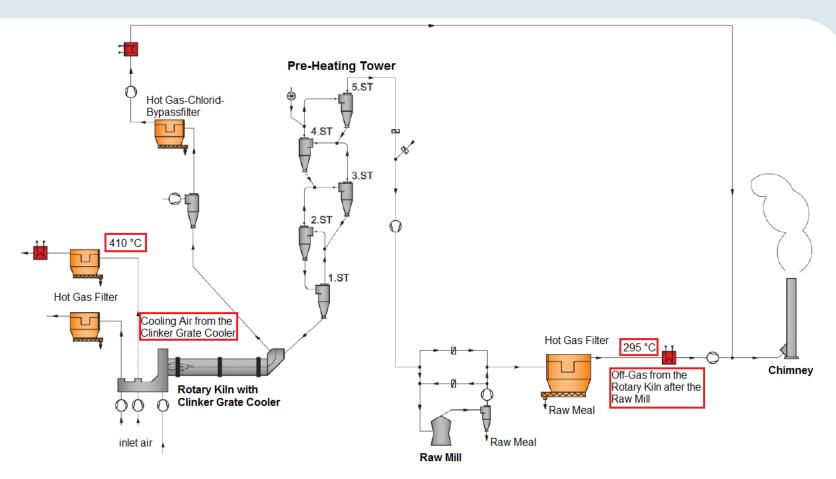
TU

Overview

- Waste Heat Recovery
- Project partners
- Cement plant Hatschek
- Steam Rankine Cycle
- Organic Rankine Cycle
- > sCO₂ advantages
- sCO₂ Brayton Cycle (sCO₂-BC)
- > tCO₂ Brayton Cycle (tCO₂-BC)
- > tCO₂ Rankine Cycle (tCO₂-RC)
- Cycle comparison and turbine efficiency
- Conclusions

Project partners

- Klima und Energie Fonds
- Rohrdorfer Zement
- Maschinenfabrik Liezen
- Salzburg AG
- Firma Scheuch
- Firma Zauner GesmbH



Waste Heat Recovery

- waste heat recovery from industrial processes is of rising interest
 - → in terms of the Energy Efficiency Directive of the EU and Climate Change
- the efficiency of using waste heat is highly influenced by the used working fluid (e.g. Water, organic substances, CO₂,...) and certain components of the cycle (compressor, pump, turbine,...)
- ➤ 5 different cycles investigated: Steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), supercritical CO₂-Brayton Cycle (sCO₂-BC), transcritical CO₂-Brayton Cycle (tCO₂-BC) and transcritical CO₂-Rankine Cycle (tCO₂-RC)
- waste heat source is the cement plant Hatschek in Gmunden (Austria)

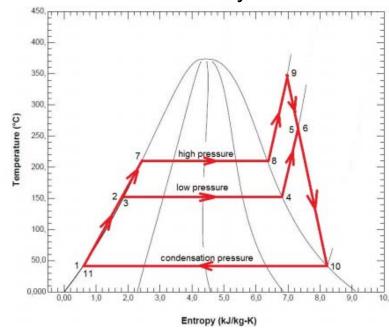
The cement plant Hatschek

2 major heat sources are available:

- the off-gas from the rotary kiln after the raw mill (295 °C, 78 kg/s)
- the cooling air from the grate cooler at the exit of the rotary kiln (410 °C, 14 kg/s)
- the hot gas from the chlorine bypass is not included (low mass flow)

Steam Rankine Cycle

- frequently used and well developed system
- + fluid characteristics
- pump has low energy consumption


Two-pressure system

- further cooling of the exhaust gas
- reduction of exergy losses

operating parameters

high pressure level	20 bara
low pressure level	6.5 bara
max. steam temperature	395°C
min. allowed ΔT in HEX	15°C
turbine isentropic efficiency	75 %

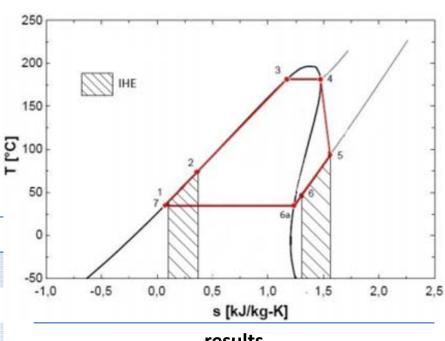
- not suited for low temperature applications
- size of steam turbines
- water treatment system

results

power output	3208 kW
thermal efficiency	23.74 %

Organic Rankine Cycle

- suited for low temperature applications
- + position of the critical point
- + no superheating

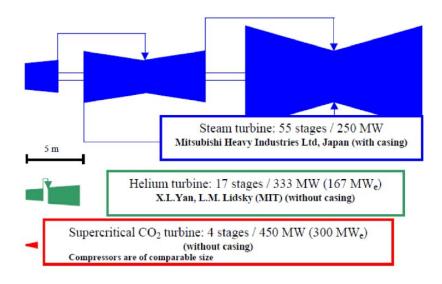

Fluid selection

- critical temperature appropriate to the heat source
- high heat transfer capacity
- best fit: cyclopentane (θ_{crit}=238°C)

operating parameters

operating pressure	34.6 bara
condensation pressure	0.7 bara
max. operating temperature	217°C
cooling water temperature	17°C
turbine isentropic efficiency	75 %

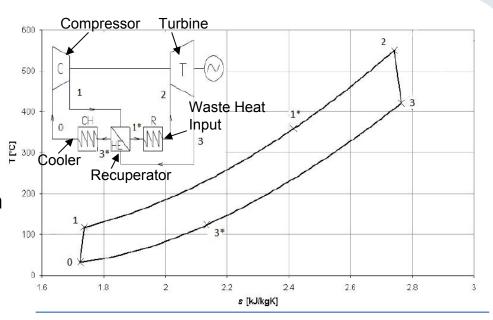
- expensive working fluids
- flammable
- global warming potential



resuits	
net power output	3915 kW
thermal efficiency	20.64 %

sCO₂ - advantages

- sCO₂ cycles achieve high efficiencies at low temperatures
- the high operating pressure enables smaller size components
- well known thermodynamic properties
- stability, non-toxicity, non-flammable
- low critical temperature (31°C)
- high power density
- low surface tension (reduced effects of cavitation in the machinery)
- abundantly available
- low costs
- easy handling
- plant personnel accustomed to CO₂



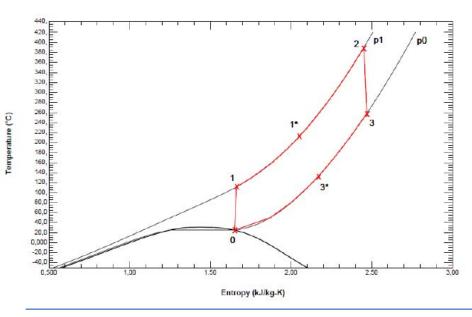
sCO₂-Brayton - Cycle (sCO₂-BC)

concept of a simple Brayton Cycle:

- ➤ 0-1: compression of the fluid
- ➤ 1-1*: heating up in the recuperator
- ➤ 1*-2: heating up with the waste heat
- ➤ 2-3: expansion in the turbine section
- ➤ 3-3*: cooling in the recuperator
- ➤ 3*-0: fluid runs through the cooler

operating parameters

high pressure level	221.4 bara
low pressure level	73.8 bara
lowest cycle temperature	34 °C
turbine inlet temperature	302 °C
cooling Water temperature	12 °C
turbine isentropic efficiency	75 %
compressor isentropic efficiency	86 %

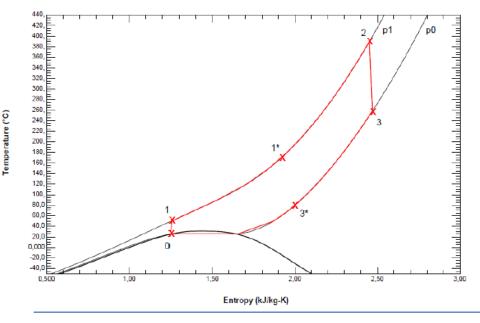

results net power output 2340 kW thermal efficiency 12.88 %

tCO₂-Brayton - Cycle (tCO₂-BC)

- > very similar to the sCO_2 -BC, but entry in compressor below the critical point \rightarrow CO_2 still in gaseous state on the saturated vapor line
- ▶ less energy used for the compression because of lower pressure → smaller compressibility factor

results	
net power output	2565 kW
thermal efficiency	13.80 %

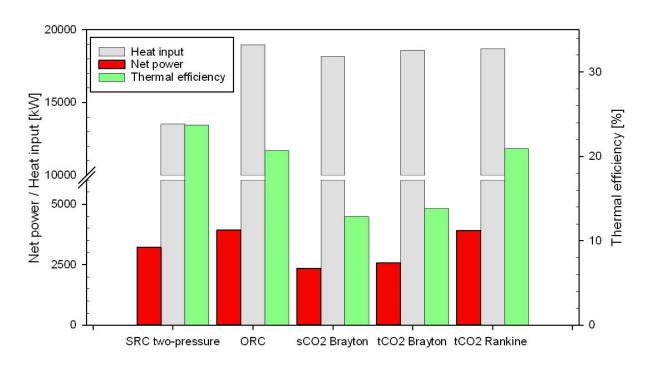
operating parameters


operating parameters	
high pressure level	221.4 bara
low pressure level	64.34 bara
lowest cycle temperature	25 °C
turbine inlet temperature	302 °C
cooling Water temperature	12 °C
turbine isentropic efficiency	75 %
compressor isentropic efficiency	86 %

tCO₂-Rankine - Cycle (tCO₂-RC)

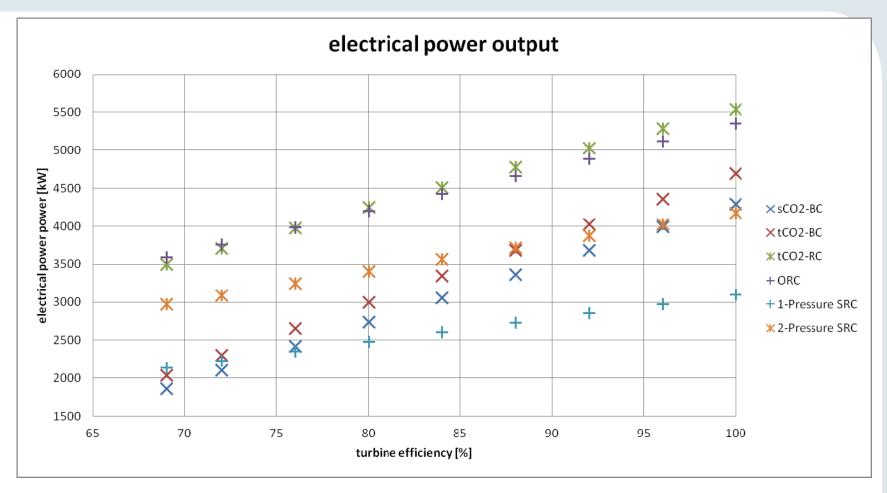
- ➤ is like the SRC a condensation process
- →two phase region is passed, CO₂ completely liquefied
- a pump is used (instead of a compressor)
- ➤ the entry in the pump is on the saturated liquid line, below critical point
- Notable less energy for compression →
 CO₂ in the liquid state (high density)
- possible problems with the cooling, depending on ambient conditions (e.g. water sources) → high water mass flow is needed (346 kg/s)

results	
Net power output	3910 kW
Thermal efficiency	20.92 %



operating parameters

221.4 bara
64.34 bara
25 °C
302 °C
12 °C
7 5 %
86 %


Cycle Comparison

- ➤ the sCO₂-BC and the tCO₂-BC have low electrical power outputs under the mentioned circumstances
- > SRC has significantly less heat input (5000 kW) than the other processes and therefore it reaches the highest thermal efficiency
- ➤ even under the assumption of a turbine efficiency of 75 % the t-CO₂-RC energy output is comparable to the standard ORC process.

Dependance on Turbine Efficiency

- > the thermal efficiency of the cycles is strongly dependent on the turbine efficiency
- ➤ high efficiency turbines allow the tCO₂-RC to offer a greater power output

Conclusions

- potential waste heat recovery system of the cement plant was analysed
- → different power cycles were simulated, aim was comparison between current used cycles and new supercritical CO₂ concepts
- ➤ transcritical CO₂ Rankine cycle delivers good results, but possible problems with cooling
- the sCO₂-BC and the tCO₂-BC are not as effective as the tCO₂-RC
- ➤ the turbine is a key component in all CO₂ cycles
- ➤ ORC approaches the results of the CO₂ cycles, but organic working fluids have several disadvantages (flammable, expensive, thermal oil, harmful to the climate,...)
- > supercritical/transcritical power cycle technology should be further developed, but also economic efficiency has to be considered in the future

W Acknowledgements

- SuCritDioCyc "(s)-CO₂-Prozesse zur Abwärmenutzung" (FFG, Projektnummer 848889, duration 01.04.2015-31.03.2016)
- sCO₂-Phase 1 "CO₂ als Arbeitsmedium in der Energierückgewinnung" (FFG, Projektnummer 853568, duration 01.03.2016-28.02.2019)

Thank you very much for your attention!