

University of Stuttgart Germany

EVALUATION OF DETERIORATION IN VERTICAL SCO2 COOLING HEAT TRANSFER IN 3 MM TUBE

Andreas Wahl Rainer Mertz Joerg Starflinger Eckart Laurien

KE

Outline

- · Motivation and aims
- Experimental setup
- Data reduction
- Results
- · Conclusion and next steps

Motivation

Flexible and efficient 25 MWe sCO₂ brayton cycle

> Support of the development of compact heat exchanger

- surface compactness
- robustness

Variabel fluid properties near the critical point of CO₂

- Design point
 - $p_{in} = 81 \text{ bar},$
 - $T_{in} = 62^{\circ}C$,
 - $T_{out} = 33^{\circ}C$
- Variable fluid properties influence local heat transfer

Aim of work

- Experimental cooling heat transfer and pressure drop in 2 mm single channel flow
- recommendation of heat transfer correlation to be used for design of compact HX

Compact HX, IKE, Stuttgart

Plate and Fin HX, Fives Cryo, France

Deteriorated and enhanced heat transfer in vertical sCO2 cooling flow

Literature Review

- Jackson (1979)
- $\frac{Gr}{Re^{2.7}} > 10^{-5}$
- $Gr = \frac{(\rho_b \overline{\rho}) \cdot \rho_b \cdot g \cdot d^3}{\eta_b^2}$
- Evaluation of ratio: $\frac{Nu_{exp}}{Nu_{FC}}$
- $\operatorname{Nu}_{\mathrm{FC}} = 0.0183 \operatorname{Re}_{b}^{0.82} \overline{Pr_{b}}^{0.5} \left(\frac{\rho_{b}}{\rho_{\mathrm{M}}}\right)^{-0.3}$

- Bruch (2008)
- D = 6 mm

Experimental setup for cooling heat transfer (I)

Experimental setup for cooling heat transfer (II)

Experimental matrix

CO_2			
pressure	mass flux		
[bar]	[kg/m²s]	[g/s]	
80	141	1	
	177	1,25	
	212	1,5	
	283	2,0	
	354	2,5	
	CO ₂ pressure [bar] 80	CO2 pressure mass f [bar] [kg/m²s] 80 141 177 212 283 354	

flow	number of	
orientation	experiments	_
upwards	45	
downwards	159	_ = 204

Data reduction

1. transfered heat

 $\dot{Q}_{CO2} = \dot{m}_{CO2} * [h_{in}(T_{in}, p_{in}) - h_{out}(T_{out}, p_{out})]$ $\dot{Q}_{cool} = \dot{V} * \rho * c_p * (T_{out} - T_{in})$

2. heat flux

$$\dot{q}_{CO2} = \frac{\dot{Q}_{CO2}}{\pi dL}$$

3. fluid- and tube temperatures

$$\begin{split} T_{CO2,b} &= \frac{T_{CO2,in} + T_{CO2,out}}{2} \\ T_t &= \frac{\sum_{i=1}^{12} T_{t,i}}{12}, T_{CO2,w} = T_t + \dot{q}_{CO2} \cdot \frac{\ln(\frac{4 \ mm}{3 \ mm})}{2\pi L\lambda} \end{split}$$

4. heat transfer coefficient

$$\begin{aligned} htc_{CO2} &= \frac{\dot{q}_{CO2}}{\Delta T} \\ \Delta T_{ave} &= T_{CO2,b} - T_{CO2,w} \\ \Delta T_{LMTD} &= \frac{\left(T_{in} - T_{CO2,w,1}\right) - \left(T_{out} - T_{CO2,w,12}\right)}{\ln\left(\frac{T_{in} - T_{CO2,w,12}}{T_{out} - T_{CO2,w,12}}\right)} \end{aligned}$$

Experimental system validation

Heat transfer in the upwards flow

Heat transfer in the downwards flow

direct comparison of up- and downwards flow

direct comparison of up- and downwards flow

Influence of mixed convection

Comparison with literature data

Conclusion

□ 204 experiments performed at IKE, University of Stuttgart

- Well known criterion were used to evaluate the heat transfer in vertical flow orientation
- Heat transfer deterioration was significant at low mass fluxes
- Deterioration ($\frac{Nu_{exp}}{Nu_{FC}}$ < 1) at higher values of $\frac{Gr}{Re^{2.7}}$ in comparison with literature data

Outlook:

- Experimental investigations of different tube diameters
- Adaptation of criterion

Acknowledgements

This project has received funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 764690

Thank you!

Andreas Wahl

e-mail andreas.wahl@ike.uni-stuttgart.de phone +49 (0) 711 685-60787 fax +49 (0) 711 685-62010

University of Stuttgart Institute of Nuclear Technology and Energy Systems Pfaffenwaldring 31, 70569 Stuttgart