Numerical dimensioning of a Pre-Cooler for sCO₂ Power Cycles to utilize industrial Waste Heat

Sebastian Unger^a, Jonas Müller^a, Malini Bangalore

Mohankumar^a, Sebastian Rath^b, Uwe Hampel^{a,c}

a - Helmholtz Zentrum Dresden Rossendorf, Institute of Fluid Dynamics, Experimental Thermal Fluid Dynamics, Dresden

b – Techische Universität Dresden, Institute of Power Engineering, Institute of Power Engineering, Dresden

c – Techische Universität Dresden, Institute of Power Engineering, Chair of Imaging Techniques in Energy and Process Engineering, Dresden

23-24.03.2021

HZDR

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

1. Motivation and Introduction

2. Industrial Waste Heat Sources

3. Numerical Model

4. Numerical Results

5. Summary and Outlook

Motivation and Introduction

Industrial Waste Heat

... is heat that arises both from equipment inefficiencies and from thermodynamic limitations on equipment and processes. DOE (2008)

Industrial Waste Heat

Gas grid Europe

Gas compressor stations:

- Approximately each 100 km
- Compressor driven by gas turbine
- Exhaust gas stream potential waste heat
- Utilization by sCO2 power cycle

Industrial gas turbine

Industrial Waste Heat

Cycle modelling

Analytical pre-calculation

→ Prediction of pressure drop, heat transfer rate and channel length

 Motivation
 Industrial Waste Heat
 Numerical model
 Results
 Summary
 DRESDEN concept
 Heat

 Page 5
 Member of the Helmholtz Association Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Model and Boundary Conditions

Conservation of mass

Member of the Helmholtz Association Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Li (2011)

Page <u>6</u>

Mesh independency and model validation

Validation by experiments of Kruizenga A. et al. (2011):

Mesh independence	y for 1.5 to 9.6	million elements:
-------------------	------------------	-------------------

sCO2: <u>Mesh 1</u> Mesh 2 ····· coolant: <u>Mesh 1</u> Mesh 2 ·····	Mesh 4 Mesh 6 Mesh 8 Mesh 4 Mesh 6 Mesh 8	
z _{pos,H2O} (mm)	z _{pos,H2O} (mm)	
240 210 180 150 120 90 60 30 0	240 210 180 150 120 90 60 30 0	
$\begin{pmatrix} 40 \\ 30 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$ \begin{array}{c} 16 \\ 14 \\ 12 \\ 10 \\ 8 \\ 6 \\ 4 \\ 0 \\ 30 \\ 60 \\ 90 \\ 120 \\ 150 \\ 180 \\ 210 \\ 240 \\ \end{array} $	
Motivation Industrial Waste Nu Heat	Imerical model Results	

 d_{CO2}

mm

 $l_{entr,CO2}$

mm

200

200

 $l_{ch,CO2}$

mm

500

500

 $l_{exit,CO2}$

mm

100

100

Inflation layer y⁺ < 1

#

1 1.9

2 1.9

Member of the Helmholtz Association Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

 G_{CO2}

 $kg/(m^2 s)$

326

762

 \dot{q}_w

 kW/m^2

-23.2

-33.9

 $T_{in,CO2}$

°C

90

60

Kruizenga, A. et al., (2011).

 ρ_{ref}

kg/m³

217.0

233.4

Results

Numerical results – channel diameter

Channel – reduced diameter increases

- Heat transfer surface and heat flow
- Higher pressure drop

70

60

50

40 30

20 10

100

300

Industrial Waste

Heat

ġ_{vol} (MW/m³)

• Small impact on global performance

Analytical -

Numerical o

Ο

500

 $G_{CO2}~(kg/(m^2~s))$

5-5

5-5

Ο

700

Numerical model

Member of the Helmholtz Association

Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Motivation

Results

Numerical results – fin height

Internal fin design – fin height increases

- Heat transfer surface and heat flow
- Higher pressure drop
- Global performance optimum at
 h = 0.04 mm

Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Results

Design proposal

Modular design for industrial gas turbine

- $m_{co2} = 20 \text{ kg/s}$ ٠
- 860 plates, each 677 channels ٠
- gas turbine WHR: 2 modules ٠

Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Motivation

Turbo

Summary and outlook

Design proposal

Summary

- Essential industrial waste heat sources identified
- Simple sCO2 power cycle model developed
- Analytical and numerical pre-cooler model developed and evaluated
- Numerical optimization of channel diameter and internal fin design
- Pe-cooler design proposal for application case

Outlook

- Extend model to further channel geometry
- Assess structural integrity
- Sophisticated flow arrangements (channel geometry)

Thank you for your attention.

Sebastian Unger

Helmholtz-Zentrum Dresden-Rossendorf Experimentelle Thermofluiddynamik

s.unger@hzdr.de +49 351 260 3225

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

Funded by the Bundesministerium für Wirtschaft und Energie 03EE5001D.

aufgrund eines Beschlusses des Deutschen Bundestages

References

Our Word in Data. URL: https://ourworldindata.org/. Retrieved: 26/05/2020

Finney, B., Jacobs, M. *Phase diagram of CO*₂. URL: https://upload.wikimedia.org/wikipedia/ commons/1/13/Carbon_dioxide_pressure-temperature_phase_diagram.svg. Retrieved: 19/05/2020

Cabeza, L. F., de Gracia, A., Fernández, A. I. & Farid, M. M. Supercritical CO2 as heat transfer fluid: A review. Appl. Therm. Eng. 125, 799–810 (2017).

Ahn, Y. et al. *Review of supercritical CO2 power cycle technology and current status of research and development.* Nucl. Eng. Technol. 47, 647–661 (2015).

Rochau, G. E. et al. Supercritical CO2 Brayton Cycles. (2014).

Department of Energy. Waste Heat Recovery: Technology Opportunities in the US Industry. (2008).

Brückner, S. et al. *Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies.* Appl. Energy 151, 157–167 (2015).

Herzog, U. Technical and economical experiences with large ORC systems using industrial waste heat streams of cement plants. (2015).

MAN Diesel & Turbo. THM Gas Turbines.

Li, Q., Flamant, G., Yuan, X., Neveu, P. & Luo, L. *Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers.* Renew. Sustain. Energy Rev. 15, 4855–4875 (2011).

Ngo, T. L., Kato, Y., Nikitin, K. & Ishizuka, T. *Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles.* Exp. Therm. Fluid Sci. 32, 560–570 (2007).

Xu, X. et al. *Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle*. Appl. Therm. Eng. 70, 867–875 (2014).

Power cycle

Industrial Waste Heat Utilization

Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Method – Analytical Model

Background

- \rightarrow rapid assessment of different configurations
- \rightarrow based on empirical heat transfer correlations
- iterative process \rightarrow

Investigated parameter range

- $d_{co2} = 0.5 3.0 \text{ mm}$ \rightarrow
- $d_{H20} = 0.5 3.0 \text{ mm}$ \rightarrow
- \rightarrow $G_{co2} = 100 - 900 \text{ kg/(m^2 s)}$

Results

Waste Heat

Sources

Page 13

- required PCHE body length \rightarrow
- volumetric heat flux \rightarrow

Power Cycle

Model

 \rightarrow sCO2 and coolant pressure drop

Pre-Cooler

Selection

Analytical

Model

Model

Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Heat Exchangers

Tu, S.-T. & Zhou, G.-Y. *Compact Heat Exchangers in Clean Energy Systems.* in Handbook of Clean Energy Systems (John Wiley & Sons, Ltd., 2015). doi:10.1002/9781118991978.hces119

Heatric. https://www.heatric.com/app/uploads/2018/03/3D-Model-picture-no-background-1000x760.png.

Krishnakumar, K. & Venkatarathnam, G. *Transient testing of perforated plate matrix heat exchangers*. Cryogenics (Guildf). 43, (2003).

Appendix

sCO2 Power Cycle Cycle Layouts

Supercritical Carbon Dioxide (sCO2) Heat Transfer Correlations

Rate of heat flow:

 $\dot{Q} = \alpha A_{ht} \left(T_w - T_b \right)$

Nusselt number:

$$Nu = \frac{\alpha L_c}{\lambda}$$

Reynolds number:

 $Re = \frac{\rho \, u \, d_{hyd}}{\mu}$

Prandtl number:

 $Pr = \frac{\nu}{a}$

Relationship forced convection Nu = f(Re, Pr)

Gnielinski (1975): $Nu_{b} = \frac{\frac{f_{b}}{8} Re_{b} Pr_{b}}{1 + 12.7 \sqrt{\frac{f_{b}}{8}} \left(Pr_{b}^{\frac{2}{3}} - 1 \right)}$ $f_{b} = (1.8 \log_{10} Re_{b} - 1.5)^{-2}$

Jackson (2002):

$$Nu_{b} = 0.0183 \, Re_{b}^{0.82} \, Pr_{b}^{0.5} \left(\frac{\rho_{w}}{\rho_{b}}\right)^{0.3} \left(\frac{\bar{c_{p}}}{c_{p,b}}\right)^{n}$$

$$n = \begin{cases} 0.4 & \text{for } T_b < T_w < T_{pc} \text{ or } 1.2 T_{pc} < T_b < T_w \\ 0.4 + 0.2 \left(\frac{T_w}{T_{pc}} - 1\right) & \text{for } T_b < T_{pc} < T_w \\ 0.4 + 0.2 \left(\frac{T_w}{T_{pc}} - 1\right) \left[1 - 5 \left(\frac{T_b}{T_{pc}} - 1\right)\right] & \text{for } T_{pc} < T_b < 1.2 T_{pc} \text{ or } T_b < T_v \end{cases}$$

DRESDEN

Industrial Waste Heat

Situation

Member of the Helmholtz Association Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Waste heat amount (PJ/a)

Industrial Waste Heat

Waste Heat Sources

Power Cycle Model Results

Analytical Model Calculation Scheme

Analytical Model

Results – Gas Turbine WHR

Member of the Helmholtz Association Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Appendix

Numerical Model Geometry

Numerical Model Mesh

- \rightarrow 1.5 9.6 million elements
- \rightarrow inflation layer y⁺ < 1

Reynolds stresses

Turbulent kinetic energy

Numerical Model Turbulence Model

$$-\rho \overline{u_i' u_j'} = \mu_t \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right) - \frac{2}{3} \rho k \delta_{ij} \qquad \qquad k = \frac{1}{2} \overline{u_i u_j}$$

Turbulent kinetic energy

$$\frac{\partial \left(\rho u_{j}k\right)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\left(\mu + \frac{\mu_{t}}{\sigma_{k3}}\right) \frac{\partial k}{\partial x_{j}} \right] + P_{k} - \beta' \rho k \omega$$

Turbulent frequency

$$\frac{\partial \left(\rho u_{j}\omega\right)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\left(\mu + \frac{\mu_{t}}{\sigma_{\omega 3}}\right) \frac{\partial \omega}{\partial x_{j}} \right] + \alpha_{3} \frac{\omega}{k} P_{k} - \beta_{3} \rho \omega^{2} + (1 - F_{1}) \frac{2\rho}{\sigma_{\omega 2}\omega} \frac{\partial k}{\partial x_{j}} \frac{\partial \omega}{\partial x_{j}}$$

Blending function for wall distance

$$F_1 = \tanh\left[\left(\min\left[\max\left(\frac{\sqrt{k}}{\beta'\omega y}, \frac{500\nu}{\omega y^2}\right), \frac{4\rho k}{CD_{kw}\sigma_{\omega 2}y^2}\right]\right)^4\right]$$

Kinematic eddy-viscosity $\nu_t = \frac{a_1 k}{\max(a_1 \omega, SF_2)}$

Blending function to restrict eddy-viscosity limiter

$$F_2 = \tanh\left(\left[\max\left(\frac{2\sqrt{k}}{\beta'\omega y}, \frac{500\nu}{\omega y^2}\right)\right]^2\right)$$

Mesh Independence Study

sCO2: — Mesh 1 --- Mesh 2 ···· Mesh 4 ···- Mesh 6 -- Mesh 8 coolant: — Mesh 1 --- Mesh 2 ···· Mesh 4 ···- Mesh 6 -- Mesh 8

HZDR

Appendix

Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Experimental Validation

Kruizenga, A. et al. *Heat Transfer of Supercritical Carbon Dioxide in Printed Circuit Heat Exchanger Geometries.* J. Therm. Sci. Eng. Appl. 3, (2011).

Appendix

Correlation Comparison

#	$d_{CO2} \ {\sf mm}$	$l_{ch,CO2} \ {\sf mm}$	$G_{CO2} \ { m kg/(m^2 s)}$	\dot{m}_{CO2} g/s	$\frac{u}{m/s}$	$Re \times 10^3$
Run 1	0.50	60	100	0.010	0.4 to 1.6	1 to 2
Run 2	0.50	80	400	0.039	1.5 to 6.2	4 to 6
Run 3	0.50	90	700	0.069	2.6 to 10.9	7 to 11
Run 4	0.50	100	1000	0.098	3.7 to 15.5	10 to 16
Run 5	1.75	240	100	0.120	0.4 to 1.6	4 to 5
Run 6	1.75	320	400	0.481	1.5 to 6.2	15 to 22
Run 7	1.75	350	700	0.842	2.6 to 10.9	25 to 38
Run 8	1.75	370	1000	1.203	3.7 to 15.5	36 to 55
Run 9	3.00	440	100	0.353	0.4 to 1.6	6 to 9
Run 10	3.00	590	400	1.414	1.5 to 6.2	25 to 38
Run 11	3.00	660	700	2.474	2.6 to 10.9	44 to 66
Run 12	3.00	690	1000	3.534	3.7 to 15.5	62 to 94

$$MRD = \frac{1}{N} \sum_{i=1}^{N} \frac{\alpha_{i,corr} - \alpha_{i,CFD}}{\alpha_{i,CFD}}$$

$$MARD = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\alpha_{i,corr} - \alpha_{i,CFD}}{\alpha_{i,CFD}} \right|$$

Numerical Model Results

Numerical Model Results

Comparison Analytical and Numerical Model

Member of the Helmholtz Association

Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Configuration: GT-5-8-700

Configuration: GT-5-8-700

Member of the Helmholtz Association Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Appendix

Configuration: GT-5-8-700

Member of the Helmholtz Association Sebastian Unger | Institut für Fluiddynamik | www.hzdr.de

Appendix

Configuration: GT-5-8-700

PCHE temperature distribution

Appendix

Design Proposal Flow Distribution

