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Background

• Internal combustion engines

– Vehicle motive-power machines

– Industrial equipment

– Small power units

• Waste-heat recovery has been acknowledged as a promising solution to improving 

ICE thermal efficiency and reducing emissions

Friction loss (10%)

Power output (30-45%)

Waste heat, e.g., exhaust gas,

jacket water
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Background

• S-CO2 cycle systems have appeared as an effective option for ICE WHR

– good thermal match with heat source

– system compactness

– free from working fluid decomposition

– Diverse wide-ranging applications

Coal power Geothermal CSP Nuclear Fuel cell
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Background

• Extensive research on S-CO2 cycle systems for ICE WHR is available

– Thermodynamic and economic investigations

– Design and optimisation with a specific heat-source condition (oversize/undersize)

• ICE will be operated under frequent part-load conditions, and the S-CO2 cycle 

system will be forced to operate under off-design conditions

• S-CO2 cycle system off-design performance needs to be carefully considered 

and the design point needs to be selected carefully
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Aim of this paper

• Explore optimal design of S-CO2 cycle systems for ICE WHR considering heat-

source fluctuations and probability of occurrence of various part-load conditions:

– all possible heat-source conditions selected for separate designs

– detailed design and off-design performance performed

– select optimal design scheme from thermodynamic and economic perspectives
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System configuration
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Component models

• Radial-inflow turbine model:

– 1-D model based on mean-line method

– loss models to capture losses relating to incidence, friction and leakage

– all geometric and aerodynamic parameters optimised to achieve highest efficiency
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Component models

• Heat exchanger model:

– shell and tube heat exchangers selected
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[1] K. Thulukkanam. Heat exchanger design handbook. Second Edition. CRC Press, 2013.
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Cost models

• Module costing technique used to calculate bare module cost of each component, 

and chemical engineering plant cost index used to obtain system capital cost:

• Levelised cost of electricity (LCOE) used for economic performance evaluations:
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Heat source conditions
• ICE with rated power of 1 MW is selected; performance below:

• Two cases considered to represent variations in the ICE operation/conditions:
– same probability of occurrence for all possible conditions (equal-weighted scenario) 

– different weights for all conditions reported in Ref. [1], with 20.6%, 18.3%, 16.2%, 14.1%, 12.5%, 

10.6% and 7.7% (different-weighted scenario), respectively

Engine load 100% 90% 80% 70% 60% 50% 40%

Temperature 

(°C)
540 532 530 527 525 515 470

Mass flow rate 

(kg/s)
1.56 1.41 1.23 1.10 0.99 0.86 0.72

[1] Li X, Shu G, Tian H. Integrating off-design performance in designing CO2 power cycle systems for engine waste heat recovery. Energy Convers Manag 2019;201:112146.
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Separate designs

• Cycle and turbine design parameters are 

optimised simultaneously to achieve 

maximum power output

• Performance of optimal designs (from a 

thermodynamic perspective) are closely 

related to given heat-source conditions
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Separate designs
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Separate designs
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Off-design performance

• System operating parameters at off-design 

conditions are optimised to achieve the 

maximum power output

• Power output decreases for all designs when 

ICE load reduces as the heat input to S-CO2

cycle system decreases

• Design scheme for rated condition (100% ICE 

load) provides higher net power output under 

most heat-source conditions
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Off-design performance
equal-weighted scenario different-weighted scenario
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Conclusions

• Design corresponding to ICE rated load (100%) provides maximum net power output of 

166 kW and corresponding lowest SIC of 4630 $/kW

• Design scheme for ICE rated load provides a higher power output under most conditions

• For equal-weighted scenario: 

– design for rated load ICE condition is optimal from a thermodynamic perspective and 

maximum annual power output reaches 922 MWh

– for 40% ICE load condition, lowest LCOE of 75 $/MWh

• For different-weighted scenario:

– design for rated load condition is optimal with a maximum annual power output of 

1330 MWh and lowest LCOE of 65 $/MWh
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Final remarks on future work

• Develop and integrate detailed compressor design and off-design models

• Consider more system configurations including utilisation of the jacket water heat

• Optimise design conditions (heat source temperature and mass flow rate)
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