

Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle

4th European sCO₂-Conference 23.-24.04.21 – Prague, Czech Republic

tu-dresden.de/mw/iet/

Motivation

- The efficiency of sCO₂-cycles is essentially connected with the closeness to the critical point
- High fluctuations of fluid properties result in high sensitivity to the lower temperature level of the cycle
- Sufficient cooling is essential but usually a tradeoff between component size and recooling conditions \rightarrow e.g. arid regions / air cooling

2B

 $T_{high} = T_3 = TIT$

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

Slide 2

Idea behind using mixtures:

- Adaption of the fluid to better fit the individual process conditions
- Modification of the fluid instead of the system
- \rightarrow Extensive screening needed to identify feasible fluid combinations

Mixture Models

Fluid modeling was done by using adapted mixture parameters as well as <u>predictive methods</u>

→ Allows the consideration of a wide range of substances, including these where no adapted mixture parameters are available

Predictive mixture-model:

Combination of multi-fluid mixture models and excess Gibbs energy models:

- Combination of the best available equation of state with the best available mixing model (e.g. COSMO-SAC, Lorentz-Berthelot, ..)
- Recently developed by our group and already / presented by A. Jäger at the 3rd sCO₂-Conference in Paris for application with CO₂
- Implemented and applied within the thermophysical property software TREND 4.0

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

Cycle Modeling

- Consideration of two rather simple cycle architectures as a basic model for screening
- Parameter range according to recooling conditions at elevated ambient temperatures, typical for e.g. CSP applications or hot summer days

Boundary condition	Symbol	Value
Min. temperature	$\vartheta_{\rm low} \equiv {\sf CIT}$	31 40 °C
Max. temperature	$\vartheta_{\mathrm{high}} \equiv TIT$	500 °C
Lower pressure level	$p_{_{ m low}}$	7.4 MPa
Upper pressure level	$p_{_{ m high}}$	20 MPa
Compressor efficiency	η_{C}	0.8
Turbine efficiency	$\eta_{ m T}$	0.9
Min. pinch point difference recuperator	$\Delta T_{ m R}$	10 K

Fig. a): Block diagram and T-s diagram representation of the Simple Cycle

Fig. b): Block diagram and T-s diagram representation of the Recuperated Cycle

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

Overall screening

- Screening of a set of a total of 135 fluids in 11 concentrations up to 40 mol% each
- − Fixed inlet temperature of ϑ_{low} = 40°C → "worst case" of the previously defined base scenario
- Comparison of the relative efficiency change with respect to pure CO_{2}

- Single-phase mixture at each process point
- No pinch point violation in the recuperator

After excluding invalid results, a total of 111 fluids remained for evaluation

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

Overall screening

- Each group contains mixtures that lead to an increase in efficiency in one of the two processes
- Distinct "trend reversal" of some fluids when comparing both cycle architectures
- Noticeable mixing gaps for several fluids
- Absence of solutions due to pinch point violations in the recuperator

Fig. a): Synoptical plot of the screening results

Slide 6

0.04

0.02

0.00

-0.02

-0.04

simple cycle

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

Selection of promising mixture candidates

Selection of 5 mixture candidates of which each:

- Showed a significant increase in efficiency in one of the two process architectures
- General suitability for use in technical systems (e.g. exclusion of HCl despite good performance)
- Comparatively low environmental impact

Name	Chem. Symbol	Mixing Model	$\Delta \eta_{ m th,max}$ Simple cycle	$\Delta \eta_{ m th,max}$ Recuperated cycle
Carbonyl sulfide	COS	Adjusted	$\approx +1.0\%$	$\approx +0.5\%$
Krypton	Kr	Adjusted	$\approx +1.2\%$	$\approx -2.2\%$
Propane	C ₃ H ₈	Adjusted	$\approx -4.2\%$	$\approx +4.2\%$
Sulfur hexafluoride	SF ₆	LB	$\approx -4.2\%$	$\approx +2.3\%$
Xenon	Хе	LB	$\approx +2.2\%$	pprox -0.25%

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

Selection of promising mixture candidates

Selection of 5 mixture candidates of which each:

- Showed a significant increase in efficiency in one of the two process architectures
- General suitability for use in technical systems (e.g. exclusion of HCl despite good performance)
- Comparatively low environmental impact

Previously described effects are also apparent in the selection:

- Trend reversal in most of the candidates in varying strength
- Limited solubility for higher concentrations of COS in CO2
- Similar behavior of C₃H₈ and SF₆ as well as the noble gases Kr and Xe
- COS is exceptional as it leads to higher efficiencies in both cycles

imes cos \circ krypton + propane riangle sf6^{LB} imes xenon^{LB}

Fig. a): Comparative plot of the mixture candidates

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

Change of the process in the h-s diagram

Kr and Xe | Simple Cycle ↑ Recuperated Cycle ↓

- Reduction in the total amount of added heat $\Delta h_{Q,\text{tot}}$ and recuperated heat Δh_{R} with higher concentrations
- Isobar slope / turbine enthalpy difference $\Delta h_{\rm T}$ remains almost unaffected
- Higher compression work $\Delta h_{\rm C}$ for higher concentrations (Kr)

Fig. a): H-s diagram and enthalpy differences for different concentrations of CO₂ and Xe

Study of the Influence of Additives to CO_2 on Performance Parameters of a sCO_2 -Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO_2 -Conference, 23.-24.03.2021, Prague, Czech Republic

Change of the process in the h-s diagram

Kr and Xe | Simple Cycle \uparrow Recuperated Cycle \downarrow

- Reduction in the total amount of added heat $Δh_{Q,tot}$ and recuperated heat $Δh_R$ with higher concentrations
- Isobar slope / turbine enthalpy difference $\Delta h_{\rm T}$ remains almost unaffected
- Higher compression work $\Delta h_{\rm C}$ for higher concentrations (Kr)

$\mathsf{C_3H_8}$ and $\mathsf{SF_6}$ $~\mid~$ Simple Cycle $\downarrow~$ Recuperated Cycle $\uparrow~$

- $\underbrace{\text{Notable increase in } \Delta h_{\text{Q,tot}} \text{ and } \Delta h_{\text{R}} \text{ with higher}}_{\text{concentrations, greater increase in } \Delta h_{\text{R}} \frac{1}{1000} \text{ than } \Delta h_{\text{Q,tot}}}$
- → Potential increase in recuperator costs!
- Reduction in $\Delta h_{\rm C}$, almost no change in $\Delta h_{\rm T}$

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

Change of the process in the h-s diagram

Kr and Xe | Simple Cycle \uparrow Recuperated Cycle \downarrow

- <u>Reduction in the total amount of added heat Δh_{Q,tot} and</u> <u>recuperated heat Δh_R with higher concentrations</u>
- Isobar slope / turbine enthalpy difference $Δh_T$ remains almost unaffected
- Higher compression work $\Delta h_{\rm C}$ for higher concentrations (Kr)

 $C_{3}H_{8}$ and SF_{6} | Simple Cycle \downarrow Recuperated Cycle \uparrow

- <u>Notable increase in Δh_{Q,tot} and Δh_R with higher</u> <u>concentrations, greater increase in Δh_R than Δh_{Q,tot}</u>
- → But: potential increase in Recuperator costs!
- Reduction in $\Delta h_{
 m C}$, almost no change in $\Delta h_{
 m T}$
- COS | Simple Cycle \uparrow | Recuperated Cycle \uparrow
- Distinct reduction in $\Delta h_{\rm C}$
- Only moderate changes in the added amount of heat as well as the isobar slope

Fig. a): H-s diagram and enthalpy differences for different concentrations of CO_2 and COS

Slide 11

Study of the Influence of Additives to CO_2 on Performance Parameters of a s CO_2 -Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European s CO_2 -Conference, 23.-24.03.2021, Prague, Czech Republic

Change of effects with varying CIT

Kr and Xe

- Efficiency increase almost independent from CIT for the simple cycle
- Slight reduction in the efficiency for the recuperated case with higher temperatures

Fig. a): Efficiency change by addition of Kr or Xe for varying CIT

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

Change of effects with varying CIT

Kr and Xe

- Efficiency increase almost independent from CIT for the simple cycle
- Slight reduction in the efficiency for the recuperated case with higher temperatures

C₃H₈ and SF₆

- Almost same behavior despite pinch point violation for propane in the recuperator
- Significant decrease in efficiency for all concentrations in the simple cycle
- Effects in the recuperated case differ with the concentration of the additive

Fig. a): Efficiency change by addition of C_3H_8 (propane) or SF_6 for varying CIT

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

Change of effects with varying CIT

Kr and Xe

- Efficiency increase almost independent from CIT for the simple cycle
- Slight reduction in the efficiency for the recuperated case with higher temperatures

C₃H₈ and SF₆

- Almost same behavior despite pinch point violation for propane in the recuperator
- Significant decrease in efficiency for all concentrations in the simple cycle
- Effects in the recuperated case differ with the concentration of the additive

COS

- Absence of results shows the limited solubility → violation of the criteria of a single phase at every process point
- Same behavior for both cycles with a slight decrease in efficiency for higher CIT

Study of the Influence of Additives to CO_2 on Performance Parameters of a s CO_2 -Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European s CO_2 -Conference, 23.-24.03.2021, Prague, Czech Republic

Conclusion

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle

- Analysis of a total of 135 fluids by using adapted mixture parameters as well as predictive methods
- Application to a base scenario with two different cycle architectures operated at elevated CIT
- Detailed evaluation of 5 promising mixing partners

With the use of additives, sCO₂-cycles can be optimized for changing operating conditions

- Efficiency increases up to 4% compared to pure CO₂ could be predicted
- Different effects of the individual mixing partners require targeted adaptation to the individual case
- Efficiency increase and suitability must be tested independently \rightarrow Further evaluation needed

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

»Wissen schafft Brücken.«

Thank you for listening.

Study of the Influence of Additives to CO₂ on Performance Parameters of a sCO₂-Cycle Sebastian Rath, Erik Mickoleit, Cornelia Breitkopf, Uwe Gampe, Andreas Jäger 4th European sCO₂-Conference, 23.-24.03.2021, Prague, Czech Republic

