

Analysis of sCO₂ Cycles for District Heating Applications

Mathias Penkuhn, George Tsatsaronis

Technische Universität Berlin

Paper No. 2021-sCO2.eu-143 March 23–24, 2021 4th European sCO₂ Conference for Energy Systems

Introduction

Carbon dioxide is a natural, alternative working fluid with favorable properties. Its application in supercritical (sCO_2) power generation cycles:

- offers the potential to realize high-efficiency designs,
- with low emissions, and
- favorable economics because of smaller equipment and higher operational flexibility compared to conventional water-steam-based power cycles.

Significant, worldwide effort in research and development is directed at future implementation and commercialization of sCO_2 technology for power generation.

Introduction

Previous research has identified two thermodynamically efficient cycle designs for standalone power generation:

- the recompression cycle for standalone sCO₂ cycles, and
- the split-flow expansion cycle for waste heat recovery sCO₂ bottoming cycles.

Potential applications will feature designs that provide

- either substantial economical,
- or operational advantages.

Cogeneration processes are generally considered advantageous. In particular, sCO_2 power cycles have waste heat that:

- is available as high-temperature thermal energy above 70 °C, and
- is suitable for desalination, or district heating.

Scope of the Study

As heat extraction for district heating is a beneficial, potential application in cold and temperate climates, the study:

- investigates the possibility of combined heat and power (CHP),
- using an sCO₂ bottoming cycle,
- in a gas turbine combined cycle application.

System designs are chosen according to the following design considerations:

- sCO₂ power cycles are high-temperature, high-pressure, but low-pressure ratio, and highly-recuperative designs.
- Cogeneration system design options are derived from conventional water-steam-based designs [1].

System Description

The sCO_2 cycle is integrated in a gas turbine combined cycle, with:

- the gas turbine model GE 9E.04 representing the topping cycle at ISO conditions* with backpressure adjustments,
- using different sCO₂ cycle designs as the bottoming cycle.

 sCO_2 cycle design options for heat extraction for district heating include:

- recooling,
- split-flow, and
- turbine extraction.

^{*}Allows for comparison with catalogue data of the conventional CCGT with 1 gas turbine and 1 steam turbine

Recooling or Backpressure sCO₂ Cycle (Design 1)

Recuperated, recooling or backpressure sCO₂ cycle design:

Split-flow, Recooling sCO₂ Cycle (Design 2)

Recuperated, split-flow sCO₂ cycle design:

Turbine Extraction, Recooling sCO₂ cycle (Design 3)

Recuperated, turbine extraction sCO_2 cycle design:

Methodology I

In this study, universally applied energy-based metrics are used for system analysis and evaluation:

• Electric efficiency:

$$\eta_{
m w} = rac{\dot{W}_{
m net}}{\dot{m}_{
m fuel}\cdot LHV_{
m fuel}}$$

• Energy utilization factor for CHP processes:

$$\eta_{\rm ov} = \frac{\dot{W}_{\rm net} + \dot{Q}}{\dot{m}_{\rm fuel} \cdot LHV_{\rm fuel}} = \eta_{\rm w} + \eta_{\rm q}$$

Methodology II

For CHP processes, the following metrics are used for system analysis and evaluation:

• Electric power to heat ratio:

$$\sigma = \frac{\dot{W}_{\rm net}}{\dot{Q}}$$

Power loss coefficient at constant fuel energy supply:

$$\beta = \left. \frac{\Delta \dot{W}_{\text{net}}}{\dot{Q}} \right|_{\dot{m}_{\text{fuel}} \cdot LHV_{\text{fuel}} = \text{const.}}$$

Simulation Parameters

Simulations are conducted using the following parameters*:

- Turbine inlet conditions: 240 bar and 390 °C to 450 °C
- Compressor inlet pressure: 80 bar
- Recuperator minimum temperature difference: 10 K
- Recuperator maximum effectiveness: 0.9
- Cooler outlet temperature: 32 °C
- Heat extraction minimum temperature difference: 5 K
- District heating supply and return temperatures: 90/50 °C Simulation constraints:
 - Off-design and part-load effects, e.g., compressor surge, are neglected, no parameter optimization runs are conducted.

^{*}Best-practice assumptions [2, 3]

Main Results I: Standalone Power Generation

	$\dot{W}_{\rm net}$	$\dot{Q}_{ m dh}$	$\eta_{ m w}$	$\eta_{ m ov}$	σ	β
ID	(MW)	(MW)	(%)	(%)	(-)	(-)
Conv. CCGT*	216.0	-	54.9	_	-	_
Recooling	206.0	_	52.7	_	-	_
Split-flow	200.5	_	51.2	_	-	_
Turbine extraction	206.0	_	52.7	_	-	_

Slightly lower, but comparable standalone electric efficiency for sCO₂ power cycles compared to conventional combined cycles because of non-optimized cycle parameters.

^{*}Based on gas turbine catalogue data [4]

Main Results II: Combined Heat and Power Generation

	$\dot{W}_{\rm net}$	$\dot{Q}_{ m dh}$	$\eta_{\sf w}$	$\eta_{ m ov}$	σ	β
ID	(MW)	(MW)	(%)	(%)	(-)	(-)
Conv. CCGT*	182.3	168.1	46.3	89.0	1.08	0.20
Backpressure	186.6	162.4	47.7	89.2	1.15	0.12
Split-flow	200.5	53.4	51.2	64.9	3.76	0
Turbine extraction	186.6	162.4	47.7	89.2	1.15	0.12

Similar energy utilization factor, better behavior concerning heat extraction for sCO_2 power cycles compared to conventional combined cycles.

^{*}Best-practice assumptions [5]

Design Space: Combined Heat and Power Generation

Sensitivity Analysis

District heating network designs are changing in the near future because of low-exergy considerations. Therefore, return and supply temperatures for future generations are lower than today:

• Set A: supply and return temperature 90/50 °C (Gen III*)

• Set B: supply and return temperature 70/40 °C (Gen IV*)

• Set C: supply and return temperature 110/60 °C (Gen II*) Because of the recuperation effect in the sCO₂ cycle designs, the supply and return temperatures are expected to have a strong influence on cycle efficiency.

^{*}Generations of district heating network designs. Nomenclature according to Lund et al. [6].

Sensitivity Analysis: Combined Heat and Power Generation

Sensitivity Analysis: Results

Compared to the reference case with a supply and return temperature of 90/50 °C, a reduction in supply and return temperature (Set B):

- allows for a higher power generation because of the increased potential to recover thermal energy, and
- thereby insignificantly reduces the amount of thermal energy available for heat extraction (lower ΔT_{dh}), but
- positively affects the split-flow design allowing for a higher heat extraction.

In contrast, higher supply and return temperatures (Set C):

- have a negative effect on power generation,
- allow for an increased heat extraction (higher ΔT_{dh}), and
- slightly reduce the amount of heat available in the split-flow design.

Conclusions

The present study successfully showed:

- the potential of using sCO₂ bottoming cycles for the cogeneration of heat and power,
- that a large amount of low temperature thermal energy can be effectively extracted, and
- that a certain amount is available without negatively affecting the power generation.

Future investigations should concentrate on:

- the sCO₂ cycle designs integrating the split-flow, and turbine extraction approaches,
- thereby reducing the impact of heat extraction on power generation, and
- analyzing the off-design and part-load behavior of the cycle designs.

References I

- [1] J. H. Horlock. *Cogeneration Combined Heat and Power* (*CHP*). Krieger Publishing Company, 1997.
- [2] N. Weiland and D. Thimsen. A practical look at assumptions and constraints for steady state modeling of sCO₂ Brayton power cycles. In: Proceedings of the 5th International Symposium – Supercritical CO₂ Power Cycles. San Antonio, USA, 2016.
- [3] F. Crespi et al. Analysis of the thermodynamic potential of supercritical carbon dioxide cycles: a systematic approach. In: Journal of Engineering for Gas Turbines and Power 140.5 (2017), page 051701.
- [4] General Electric. 2019 Gas Power Systems Catalogue. 2019.

References II

- [5] S. C. Gülen. *Gas Turbine Combined Cycle Power Plants*. CRC Press, 2019.
- [6] H. Lund et al. *4th Generation District Heating (4GDH)*. In: *Energy* 68 (2014), pages 1–11.