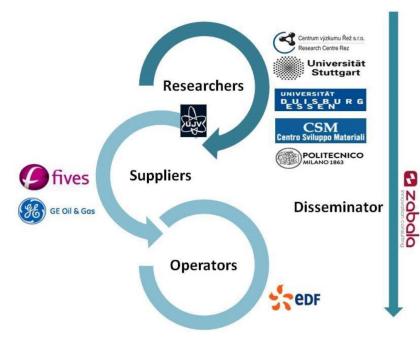


Environmental assessment of a 25 MWe fossil-fired supercritical CO₂ cycle

Victor MAQUART Benoît VALENTIN (speaker) Albannie CAGNAC

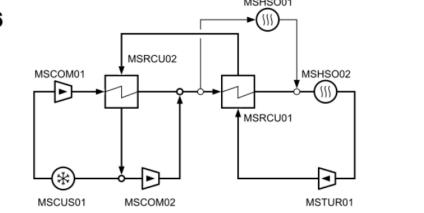
4th European sCO2 Conference for Energy Systems Tuesday, March 23th 2021


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764690-

Project sCO₂-Flex

EU-funded project (5,6 M€) aimed at designing and assessing a 25 MWe fossil-fired cycle:

- Consortium members from 5 countries
- From January 1st 2018 to June 30th 2021
- Materials / equipment testing
- Main technical objectives:
 - Higher efficiency and flexibility
 - Better economics
 - Lower environmental footprint


23.03.2021 sCO2-Flex Environmental Assessment - 4th European sCO2 Conference

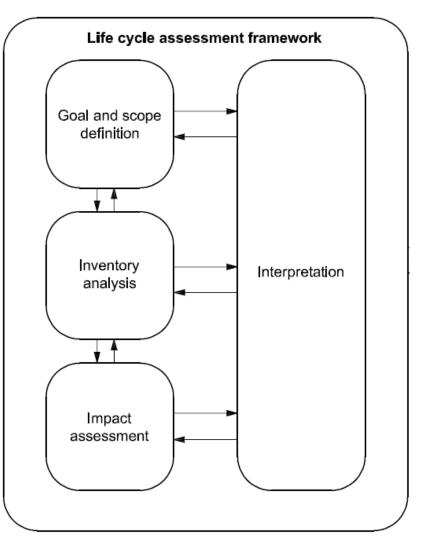
Recompression cycle with hot recuperator bypass :

- $T_{max} = 620^{\circ}C$
- $T_{min} = 33^{\circ}C$
- $P_{max} = 250$ bars
- P_{min} = 81 bars
- W_{raw} = 25 MW_e

Assumption	Value	Unit
Cycle raw efficiency	42.3	%
Boiler LHV efficiency	92.5	%
Yearly number of startups	30	-
Energy penalty for a startup	20	MWhth
Overall auxiliary consumption & losses	1720	kWe

le with hot

sCQ,flex


Cycle developed in sCO₂-Flex

Methodology

This study followed, whenever possible, the guidelines provided by standards ISO-14040 and 14044 on LCA.

It is however not, properly speaking, an LCA, as full LCAs involve a critical review by a specialized cabinet.

The study was performed with OpenLCA v1.10, using the database Ecolnvent v3.6

Scope of study (1/2)

Reference unit: average kWh delivered to the Czech grid (the boiler being designed for fuel used in Czech Republic)

	Reference plant (Ecolnvent 3.6)	sCO ₂ -Flex plant	Unit
Dispatch strategy	5800	5000	hr/yr (full-load equivalent)
Plant lifetime	26	30	years
Plant yearly efficiency	0,333	0,364	-
Plant net output at full load	> 250	23,3	MW _e

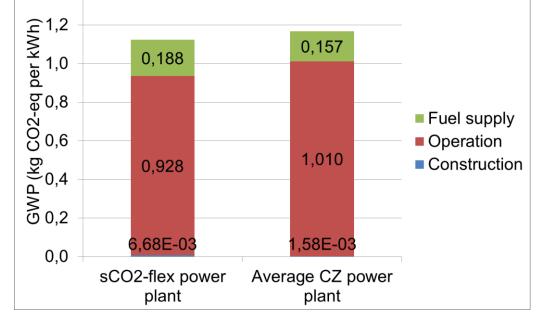
Scope of study (2/2)

Phases of the plant's lifetime:

- Construction (data for the cycle taken from project partners, generic data from Ecolnvent database for the other equipments)
- Fuel supply chain (coal mining, preparation and transportation)
- Operation (coal combustion, flue gas and ash treatment)

Impact categories selected:

- Global Warming Potential at 100 years (GWP) : kg CO₂ equivalent
- Abiotic Depletion Potential (ADP) : kg Sb equivalent

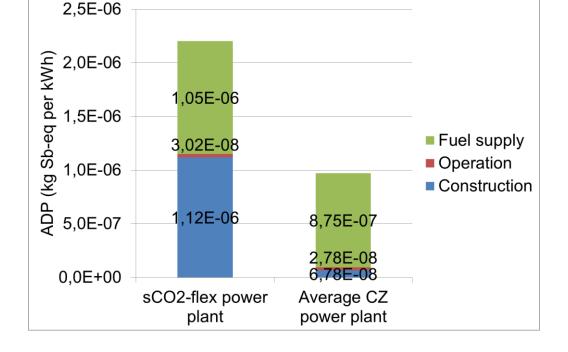

1,4

Results: GWP

As expected, the majority of the plant's impact comes from the operation phase.

sCO₂-Flex plant's impact is overall lower.

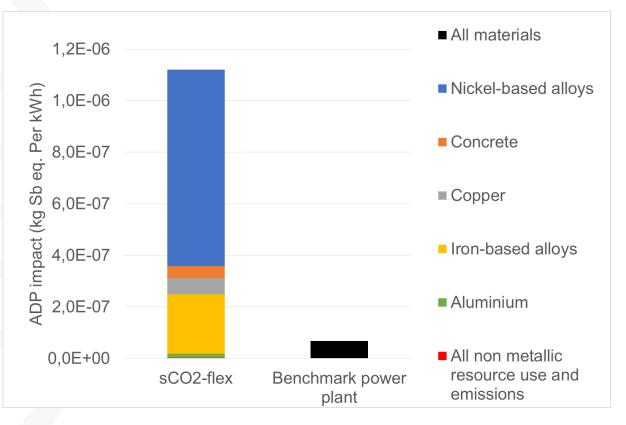
The fuel supply phase is however not negligible, due to a coal of moderate LHV.



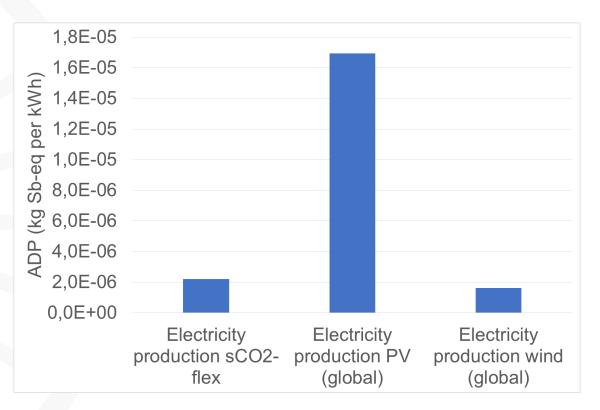
Results: ADP (1/3)

Higher impact on that indicator.

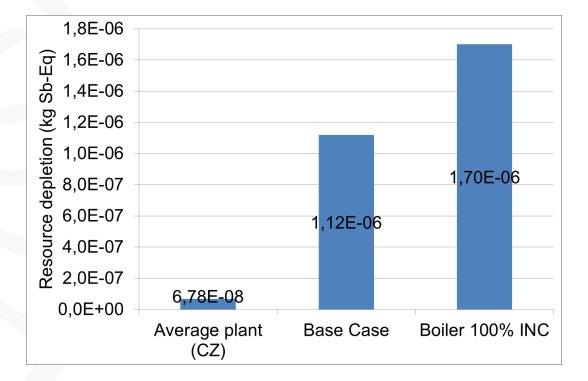
The main difference occurs in the plant construction phase, due to the small size of the plant and the high amount of Ni-based alloys in the boiler.


The fuel supply phase is still higher, probably still due to poor fuel quality.

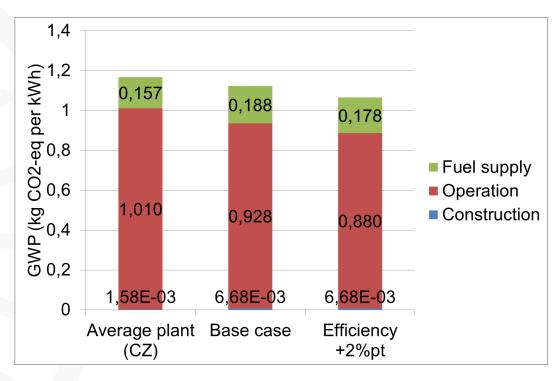
Results: ADP (2/3) Construction phase



The use of noble (especially Ni-based) alloys in the boiler causes the impact of the construction phase to increase dramatically.

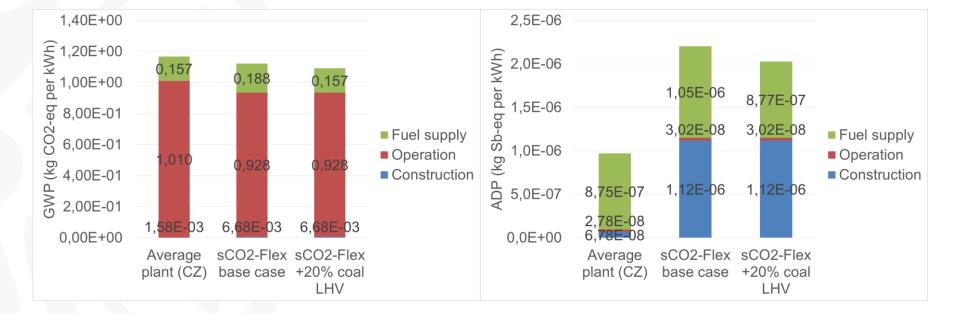

Results: ADP (3/3) Comparison with renewables

Resource depletion is usually more linked to renewables. sCO₂-Flex plant is still better than PV on that account, but worse than wind power.


Sensitivity study: Ni-based alloys

The share of INC 617 in the boiler has a significant influence on the plant's environmental footprint \rightarrow care is required when raising the maximum temperature / pressure

Sensitivity study: efficiency



Gains in efficiency (for instance when scaling up or raising the maximum temperature) will result in savings in GHG emissions

Sensitivity study: fuel LHV

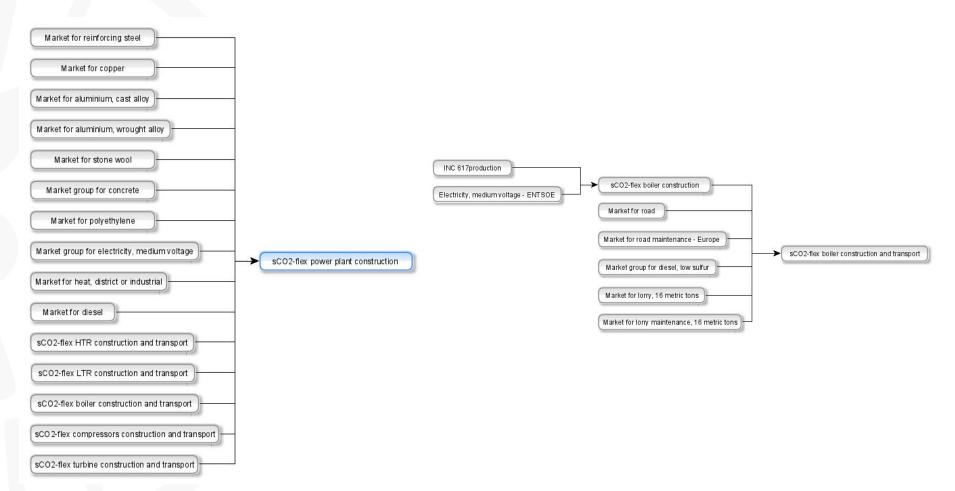
Higher LHV → lower fuel consumption in mass → lower environmental impact (all else being equal)

sCO₂ plants can be expected to bring improvements on GHG emissions.

Work is still needed to mitigate the higher impact on abiotic resource depletion, especially in order to minimize the share of Ni-based alloys in the boiler.

The overall environmental impact of such a plant should benefit from a scale-up (25 MW_e raw considered in the present study).

Thank you! Any question ?


Victor MAQUART Benoît VALENTIN (benoit.valentin@edf.fr) Albannie CAGNAC

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 764690.

Model: construction

Model: Fuel supply

Hard coal, import from Canada/USA	
Hard coal, import from Russia	
Hard coal, import from Indonesia	
Hard coal, import from South Africa	
Hard coal, import from Australia	
Hard coal, import from Latin America	e
Market for transport, inner waterways, barge - Europe	
Market for transport, freight train - Europe	Market for hard coal - Europe
Marketfor mine operation and coal preparation	
Market for electricity, medium voltage - ENTSOE	
Market for electricity, medium voltage - Ukraine	
Market for electricity, medium voltage - Albania	
Market for electricity, medium voltage - Belarus	

Model: plant operation

18

