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• Motivation

• Fukushima 

• Scientific Trend: new heat removal systems

• Active Heat Removal System with Turbo-Compressor

• sCO2 as a working fluid

• Air as ultimate heat sink

• Self-propelling

• Very compact 
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Introduction (1): Overview and motivation
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Introduction (2): Concept of heat removal system

G TC

Pel

Outdoor Area

Ambient Air

SG (PWR)

or

RPV (BWR)

UHS
(Ultimate Heat Sink/

Gas cooler)

CHX
(Compact-Heat-Exchanger)

TAC
(Turbo-Alternator-

Compressor)

Containment Reactor Building

• Brayton cycle

(x times depending on

NPP size)



• sCO2-Brayton-cycle:

• Thermodynamic Design

• Layout and control

• Turbomachinery performance

maps

• Modelling and control of UHS

• Simulation 

• Start-up

• Varying boundary conditions

(especially ambient temperatures)

Modelling and simulations are performed with the thermal-hydraulic system code 

ATHLET (Analysis of THermal-hydraulics of LEaks and Transients)
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Introduction (3): Objective of this presentation
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Thermodynamic Design

16.03.2021

• Assumptions

• ሶ𝑄𝐶𝐻𝑋 = 10 MW

• 𝑇𝑎𝑖𝑟 = 45 °C

• 𝑇𝑠𝑡𝑒𝑎𝑚,𝑠𝑎𝑡 = 296.5 °C

• 𝜂𝑖𝑠,𝑐,𝑡 = 70 %

• 𝜋𝑐 = 1.7

• Optimization of compressor

inlet pressure 𝑝1 for highest

excess power ∆𝑃 = 𝑃𝑡 − 𝑃𝑐 − 𝑃𝑓𝑎𝑛

• Result

• ∆𝑃 = 283 kW (𝜂 = 2.8 %)

• 𝑝1 = 12.6 MPa

• Considerably above critical point of CO2

Cycle excess power as a function of 

compressor inlet pressure



• Bypasses

• Turbine bypass

• Compressor recirculation

• UHS bypass

• Control

• Compressor inlet temperature 𝑇1
via fan speed

• Turbine inlet temperature 𝑇3
via turbomachinery shaft speed

University of Stuttgart – Institute of Nuclear Technology and Energy Systems 7

Detailed Layout and Control
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Turbomachinery Performance Maps

Compressor type 1:

DPcomp = DPcycle

Compressor type 2:

DPcomp ≠ DPcycle
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UHS (1): Modelling

• Representative pipe with heat transfer, pressure drop via correlations

• Air side heat transfer correlation validated and extended for low Reynolds 

numbers with experimental data

Source: A. Hacks, UDE, Location: Essen (Germany)

UHS at experimental test-loop (glass model)Air-side heat transfer coeff.



• Fans not modelled explicitly

• Fan power derived from proportional relationship: 𝑃𝑓𝑎𝑛 ~
ሶ𝑚3

෥𝜌2
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UHS (2): Modelling

Fan power over air mass flow rate (relative)
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UHS (3): Control

• Motivation

• Enable cycle operation for the whole range of ambient temperatures

from –45 °C to 45 °C

• Avoid subcritical (two-phase) conditions in the cycle

• Avoid compressor surge

• Control of compressor inlet temperature 𝑇1

• PI-controller: ሶ𝑚𝑎𝑖𝑟(𝑡) = ሶ𝑚𝑎𝑖𝑟(𝑡0) +𝐾𝑝
∗ ∆𝑇1 (𝑡) +𝐾𝑖

∗ 𝑡0׬
𝑡
∆𝑇1(𝜏)dτ

• Step increase of CO2 mass flow rate

• First proportional gain 𝐾𝑝
∗ is determined

• Second integral gain 𝐾𝑖
∗ is determined with selected 𝐾𝑝

∗



• Tuning at design ambient temperature of 45 °C (figure)

• Tuning at –45 °C: gains should be 10 times lower
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UHS (4): Control

Compressor inlet temperture with different integral gains
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Simulation (1): Cycle performance

Excess power of cycle at 𝑻𝒄𝒐𝒎𝒑,𝒊𝒏 = 𝟓𝟓 °C and 𝑻𝒂𝒊𝒓,𝒊𝒏 = 𝟒𝟓 °C
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Simulation (2): Cycle performance

Excess power of cycle at 𝑻𝒄𝒐𝒎𝒑,𝒊𝒏 = 𝟑𝟓 °C and 𝑻𝒂𝒊𝒓,𝒊𝒏 = 𝟐𝟓 °C
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Simulation (3): Cycle performance

Excess power of cycle at 𝑻𝒄𝒐𝒎𝒑,𝒊𝒏 = 𝟓𝟓 °C and 𝑻𝒂𝒊𝒓,𝒊𝒏 = −𝟒𝟓 °C
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Start-up of cycle

• Cycle must be operable at any ambient temperature: –45 °C to 45 °C 

• (Fast) start-up from cold shutdown conditions might not be possible

• Material stress

• Compressor surge

• Fluid accumulates in UHS

• Alternative: Operational readiness state (ORS)

• Cycle in part-load during normal operation of nuclear power plant

• Self-propelling ORS might be possible at only 12 % of design thermal 

power
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DP

From ORS

Cool-down to 𝑇3 = 260 °C

NPP simulation: First results

Excess power of cycle at 𝑻𝒄𝒐𝒎𝒑,𝒊𝒏 = 𝟓𝟓 °C and 𝑻𝒂𝒊𝒓,𝒊𝒏 = 𝟒𝟓 °C

Control of 𝑛 to keep 𝑇3 constant
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• Design, layout, control and modelling of sCO2 heat removal system

• Start-up from operational readiness state

• Type 2 turbomachinery preferred due to higher surge margin

• Compressor inlet temperature should always be kept constant at 55 °C

• Future Work

• Further improvement of component models

• Simulation of the sCO2-HeRo-System attached to the NPP (in progress)
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Conclusion
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Thermodynamic Design

• Design parameters chosen to guarantee nominal heat removal 

(10 MWth) at conservatively high ambient temperature (45 °C)

• Major cri terion: heat removal; eff ic iency of minor importance

• Takes into account technical design constraints identi f ied in 

cooperation with WP4 (e.g. maximum temperature difference 

in HXs)
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Turbomachinery Performance Maps

Compressor type 1: DPcomp = DPcycle
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Turbomachinery Performance Maps

Compressor type 2: DPcomp ≠ DPcycle
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UHS (1): Modelling

• Representative pipe with heat transfer, pressure drop via correlations

• Experimental data was used to fit air side heat transfer for low Reynolds 

numbers

• Fans not modelled explicitly

• Fan power derived from proportional relationship: 𝑃𝑓𝑎𝑛 ~
ሶ𝑚3

෥𝜌2

• Fans for NPP-UHS are located at the bottom: ሶ𝑉 =
ሶ𝑚

𝜌𝑖𝑛

• More detailed: 𝑃𝑓𝑎𝑛 ~ Δ𝑝 ሶ𝑉 ~
ሶ𝑚2

0.5(𝜌𝑖𝑛+𝜌𝑜𝑢𝑡)

ሶ𝑚

𝜌𝑖𝑛

• Design point power is calculated assuming a specific power consumption

∆𝑃𝑓𝑎𝑛,𝑑𝑒𝑠 = ሶ𝑄𝑈𝐻𝑆 ∗ 8.5 kWel/MWth



• Operation points considerably above critical point → gradients in 

thermodynamic properties are lower

• No inventory control

➢Pressures and temperatures are linked

➢E.g. when air flow rate is increased, compressor inlet temperature and 

pressure will decrease

➢Resulting in almost constant compressor inlet density

➢Difficult to use density as a control parameter
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UHS (2): Control

Compressor inlet temperature vs. density control
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Start-up of cycle

Unit ORS1 ORS2 ORS3

Turbomachinery speed 

relative to the cycle design 

point

%

20 20 20

Turbine bypass valve % 58 24 0

Turbine valves % 0 0 100

Compressor inlet p bar 117.3 122.1 122.6

Compressor outlet p bar 119.4 125.2 125.7

CHX outlet T °C 111 150 155

CHX thermal power MW 1.2 1.2 1.2

Mass flow rate (CO2) kg/s 8.5 5.9 5.7

Compressor efficiency % 50.7 68.2 68.9

Turbine efficiency % 0 0 71.4

Compressor power kW 7.1 5.0 4.9

Turbine power kW 0 0 6.5

Fan power kW 0.6 0.4 0.4

Total power kW -7.7 -5.4 1.2



• 𝑻𝒄𝒐𝒎𝒑,𝒊𝒏 = 𝟓𝟓 °C, 𝑻𝒂𝒊𝒓,𝒊𝒏 = 𝟒𝟓 °C     vs.  𝑻𝒄𝒐𝒎𝒑,𝒊𝒏 = 𝟑𝟓 °C, 𝑻𝒂𝒊𝒓,𝒊𝒏 = 𝟐𝟓 °C
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Simulation (4): UHS-QT-diagram



• 𝑻𝒄𝒐𝒎𝒑,𝒊𝒏 = 𝟓𝟓 °C, 𝑻𝒂𝒊𝒓,𝒊𝒏 = 𝟒𝟓 °C     vs.  𝑻𝒄𝒐𝒎𝒑,𝒊𝒏 = 𝟑𝟓 °C, 𝑻𝒂𝒊𝒓,𝒊𝒏 = 𝟐𝟓 °C
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Simulation (5): UHS-subvolumes-T-diagram
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DP

From ORS

Cool-down to 𝑇3 = 260 °C

NPP simulation: First results

• 𝑻𝒄𝒐𝒎𝒑,𝒊𝒏 = 𝟓𝟓 °C and 𝑻𝒂𝒊𝒓,𝒊𝒏 = 𝟒𝟓 °C

Control of 𝑛 to keep 𝑇3 constant
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4 systems (with adaption to decay heat curve)

• Control of turbomachinery speed and subsequent shutdown

• Systems can run for more than 72 h

• Excess power always higher than zero

NPP simulation: First results
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