

University of Stuttgart

Institute of Nuclear Technology and Energy Systems

Simulation and Analysis of a Self-Propelling Heat Removal System using sCO₂ at Different Ambient Temperatures M. Hofer, H. Ren, F. Hecker, M. Buck, D. Brillert, J. Starflinger

KE

4th European sCO₂ Conference, Prague, 23.03.2021

Outline

- 1. Introduction
- 2. Design, layout, control and modelling of sCO₂-cycle
- 3. Simulation and analysis
- 4. Conclusion and future work

Introduction (1): Overview and motivation

- Motivation
 - Fukushima
 - Scientific Trend: new heat removal systems
- Active Heat Removal System with Turbo-Compressor
 - sCO₂ as a working fluid
 - Air as ultimate heat sink
 - Self-propelling
 - Very compact

Introduction (2): Concept of heat removal system

Introduction (3): Objective of this presentation

- sCO₂-Brayton-cycle:
 - Thermodynamic Design
 - Layout and control
 - Turbomachinery performance maps
 - Modelling and control of UHS
- Simulation
 - Start-up
 - Varying boundary conditions (especially ambient temperatures)

Modelling and simulations are performed with the thermal-hydraulic system code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients)

Thermodynamic Design

- Assumptions
 - $\dot{Q}_{CHX} = 10 \text{ MW}$
 - $T_{air} = 45 \ ^{\circ}\mathrm{C}$
 - *T_{steam,sat}* = 296.5 °C
 - $\eta_{is,c,t} = 70$ %
 - $\pi_c = 1.7$
- Optimization of compressor inlet pressure p₁ for highest excess power ΔP = P_t - P_c - P_{fan}
- Result
 - $\Delta P = 283 \text{ kW} (\eta = 2.8 \%)$
 - *p*₁ = 12.6 MPa
 - Considerably above critical point of CO₂

Cycle excess power as a function of compressor inlet pressure

Detailed Layout and Control

- Bypasses
 - Turbine bypass
 - Compressor recirculation
 - UHS bypass
- Control
 - Compressor inlet temperature T₁
 via fan speed
 - Turbine inlet temperature T₃
 via turbomachinery shaft speed

Turbomachinery Performance Maps

Compressor type 1:

 $DP_{comp} = DP_{cycle}$ $DP_{comp} \neq DP_{cvcle}$ 25251.0-©rotational speed in krpm Totational speed in krpm 30 ---surge line ---surge line 20**O** design point of compressor 20**O** design point of compressor \mathbf{x} design point of cycle \mathbf{x} design point of cycle $\Delta h_{t,is} ext{ in } kJ/kg$ 01 21 $\begin{array}{c} \Delta h_{t,is} \text{ in } kJ/kg \\ 0 & \text{cf} \\ 0 & \text{cf} \end{array}$ 25 ઝ ન્ટુ 200 × 铅 3 30 20 20 153 55P 15 10 10 5 0 0 0 2040 60 80 20 4060 80 0 \dot{m} in kg/s \dot{m} in kg/s

Compressor type 2:

UHS (1): Modelling

- Representative pipe with heat transfer, pressure drop via correlations
- Air side heat transfer correlation validated and extended for low Reynolds numbers with experimental data

University of Stuttgart - Institute of Nuclear Technology and Energy Systems

UHS (2): Modelling

- · Fans not modelled explicitly
- Fan power derived from proportional relationship: $P_{fan} \sim \frac{\dot{m}^3}{\tilde{\rho}^2}$

UHS (3): Control

- Motivation
 - Enable cycle operation for the whole range of ambient temperatures from –45 °C to 45 °C
 - Avoid subcritical (two-phase) conditions in the cycle
 - Avoid compressor surge
- Control of compressor inlet temperature T₁
 - PI-controller: $\dot{m}_{air}(t) = \dot{m}_{air}(t_0) + K_p^* \Delta T_1(t) + K_i^* \int_{t_0}^t \Delta T_1(\tau) d\tau$
 - Step increase of CO₂ mass flow rate
 - First proportional gain K_p^* is determined
 - Second integral gain K_i^* is determined with selected K_p^*

UHS (4): Control

- Tuning at design ambient temperature of 45 °C (figure)
- Tuning at -45 °C: gains should be 10 times lower

Simulation (1): Cycle performance

Excess power of cycle at $T_{comp,in} = 55$ °C and $T_{air,in} = 45$ °C

Simulation (2): Cycle performance

Excess power of cycle at $T_{comp,in} = 35$ °C and $T_{air,in} = 25$ °C

Simulation (3): Cycle performance

Excess power of cycle at $T_{comp,in} = 55$ °C and $T_{air,in} = -45$ °C

Start-up of cycle

- Cycle must be operable at any ambient temperature: -45 °C to 45 °C
- (Fast) start-up from cold shutdown conditions might not be possible
 - Material stress
 - Compressor surge
 - Fluid accumulates in UHS
- Alternative: Operational readiness state (ORS)
 - Cycle in part-load during normal operation of nuclear power plant
 - Self-propelling ORS might be possible at only 12 % of design thermal power

NPP simulation: First results

Excess power of cycle at $T_{comp,in} = 55$ °C and $T_{air,in} = 45$ °C

Conclusion

- Design, layout, control and modelling of sCO₂ heat removal system
- Start-up from operational readiness state
- Type 2 turbomachinery preferred due to higher surge margin
- Compressor inlet temperature should always be kept constant at 55 °C
- Future Work
 - Further improvement of component models
 - Simulation of the sCO₂-HeRo-System attached to the NPP (in progress)

The presented work is funded by the **German Ministry for** Economic Affairs and Energy (BMWi. Project no. 1501557) on basis of a decision by the German Bundestag.

Federal Ministry for Economic Affairs and Energy

THANK YOU

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847606. This text reflects only the author's views and the Commission is not liable for any use that may be made of the information contained therein.

University of Stuttgart Institute of Nuclear Technology and Energy Systems

Thank you!

Markus Hofer

e-mail markus.hofer@ike.uni-stuttgart.de phone +49 (0) 711 685-60855 fax +49 (0) 711 685-62010

University of Stuttgart Institut für Kernenergetik und Energiesysteme Pfaffenwaldring 31 • 70569 Stuttgart

Thermodynamic Design

- Design parameters chosen to guarantee nominal heat removal (10 MWth) at conservatively high ambient temperature (45°C)
- Major criterion: heat removal; efficiency of minor importance
- Takes into account technical design constraints identified in cooperation with WP4 (e.g. maximum temperature difference in HXs)

Turbomachinery Performance Maps

Compressor type 1: $DP_{comp} = DP_{cycle}$

Turbomachinery Performance Maps

Compressor type 2: $DP_{comp} \neq DP_{cycle}$

UHS (1): Modelling

- Representative pipe with heat transfer, pressure drop via correlations
- Experimental data was used to fit air side heat transfer for low Reynolds numbers
- Fans not modelled explicitly
- Fan power derived from proportional relationship: $P_{fan} \sim \frac{\dot{m}^3}{\tilde{\sigma}^2}$
- Fans for NPP-UHS are located at the bottom: $\dot{V} = \frac{\dot{m}}{\rho_{in}}$
- More detailed: $P_{fan} \sim \Delta p \dot{V} \sim \frac{\dot{m}^2}{0.5(\rho_{in} + \rho_{out})} \frac{\dot{m}}{\rho_{in}}$
- Design point power is calculated assuming a specific power consumption

$$\Delta P_{fan,des} = \dot{Q}_{UHS} * 8.5 \text{ kW}_{el}/\text{MW}_{th}$$

UHS (2): Control

Compressor inlet temperature vs. density control

- Operation points considerably above critical point → gradients in thermodynamic properties are lower
- No inventory control
 - Pressures and temperatures are linked
 - E.g. when air flow rate is increased, compressor inlet temperature and pressure will decrease
 - Resulting in almost constant compressor inlet density
 - Difficult to use density as a control parameter

Start-up of cycle

	Unit	ORS1	ORS2	ORS3
Turbomachinery speed relative to the cycle design point	%	20	20	20
Turbine bypass valve	%	58	24	0
Turbine valves	%	0	0	100
Compressor inlet p	bar	117.3	122.1	122.6
Compressor outlet p	bar	119.4	125.2	125.7
CHX outlet T	°C	111	150	155
CHX thermal power	MW	1.2	1.2	1.2
Mass flow rate (CO ₂)	kg/s	8.5	5.9	5.7
Compressor efficiency	%	50.7	68.2	68.9
Turbine efficiency	%	0	0	71.4
Compressor power	kW	7.1	5.0	4.9
Turbine power	kW	0	0	6.5
Fan power	kW	0.6	0.4	0.4
Total power	kW	-7.7	-5.4	1.2

University of Stuttgart – Institute of Nuclear Technology and Energy Systems

Simulation (4): UHS-QT-diagram

•
$$T_{comp,in} = 55 \text{ °C}, T_{air,in} = 45 \text{ °C}$$
 vs. $T_{comp,in} = 35 \text{ °C}, T_{air,in} = 25 \text{ °C}$

Simulation (5): UHS-subvolumes-T-diagram

•
$$T_{comp,in} = 55 \text{ °C}, T_{air,in} = 45 \text{ °C}$$
 vs. $T_{comp,in} = 35 \text{ °C}, T_{air,in} = 25 \text{ °C}$

NPP simulation: First results • $T_{comp,in} = 55$ °C and $T_{air,in} = 45$ °C Cool-down to $T_3 = 260 \text{ °C}$ $\times 10^4$ 0.25 2.5 $\Delta P < 0$ 0.2 2 nim/1 ni n 1'2 ∆P in MW DP 0.15 MD 0.1 $T_3 > T_{max}$ 1 0.05 Control of *n* to keep T_3 constant From ORS 0.5 8 10 4 6 $\boldsymbol{Q}_{\text{CHX}}$ in MW

NPP simulation: First results

4 systems (with adaption to decay heat curve)

- Control of turbomachinery speed and subsequent shutdown
- Systems can run for more than 72 h
- Excess power always higher than zero

