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Introduction (1): Overview and motivation

« Motivation
* Fukushima
 Scientific Trend: new heat removal systems

 Active Heat Removal System with Turbo-Compressor
» sCO, as a working fluid
* Air as ultimate heat sink
 Self-propelling
* Very compact
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Introduction (2): Concept of heat removal system
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Introduction (3): Former ATHLET Simulations
Decay power compared to thermal power of heat removal system
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Introduction (4): Overall Objective

« Enable ATHLET to simulate sCO,-Brayton-Cycles and their interaction
with existing or future BWR, PWR, VVER, etc. for safety analyses

« ATHLET code extensions
« Validation experiments
* NPP and cycle simulations

» Objective of this presentation

4
* Overview of the code extensions

/=\

« Operation strategies :
of the sCO,-Brayton-Cycle
(under varying steam side :I %

boundary conditions) : Py
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Compact heat exchanger: Representative channel model

* Only one representative channel pair is modelled

* Correlations for heat transfer coefficients and pressure drop
(sCO,: Gnielinski and Colebrook)

* Inlet and outlet Apyienum = Erorm™*/(2p)

source representative channel of the CHX sink
/ {f"orm in ffar'm,ouf \
N HX ouT
junction subvolume
Simulation of
150 mm .
- » experimental CHX
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Ultimate heat sink: Simplified model

* Modelling similar to CHX (only one pipe of the plate-fin HX is modelled)
* In this analysis the air side heat transfer is not modelled explicitly
* Quys is controlled to keep the compressor inlet temperature constant

* In reality this is achieved by varying the fan speed

UHS at glass model:
Experimental test-loop
in Essen (Germany)
Source: A. Hacks, UDE
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Radial turbomachinery (1): Real gas approach

» Performance map for specific thermodynamic inlet condition (e.g. design)

» Real gas similarity approach for different conditions [1]

» Dimensionless Performance Map: (n, =) = f(Mag, Mag)

ey =™ ND _ (s
M, = D7e and M@— 2 with speed of sound ¢ = (8/))5

« speed of sound ¢ should be used instead of the heat capacity ratio y = Z—p

v

in the similarity approach (especially for liquid-like CO,)

* [1]: Pham et al. (2016) An approach for establishing the performance maps of the sc-CO2 compressor: Development
and qualification by means of CFD simulations. International Journal of Heat and Fluid Flow, 61, 379-94.
https://doi.org/10.1016/}.ijheatfluidflow.2016.05.017

* Model in this work is mathematically identical to [1]
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Radial turbomachinery (2): This analysis

« Compressor

« Dimensionless performance 015
map of the glass model —
compressor

0.1+

AR’
is

. 0.05 +
- Conservative approach

because pressure ratio 0~ :
o 0.16 A

and efficiency are lower M
04 1 x 107

compared to large-scale machines Ma,, 0 Ma

* Turbine
» Stodola’s cone law with efficiency correlation for radial machines

« Performance map of the glass model turbine cannot be used because at
the design point of the large-scale cycle the rotational speed of both
machines is different
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Operational Analysis (1): ATHLET nodalisation

* Qyus is controlled to keep Tcompressor,in at its design value

* Variation of H,O side boundary conditions

CHX_H20

MHu20 ouT6
IN2

PH20 —» OUT5S

—> PIPE1 COMPRES PIPE2 CHX PIPE3 TURBINE PIPE4

UHS

Tcompressor,in N

QUHS
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Operational Analysis (2): Start and end of analysis

« Simulation starts at t,gyq (QHeRO = Qdecay)

e Simulation end at 100 000 s =27.8 h

4.5

loss of coolant

c 35 inventory
g
9} 75 QHE?RO
% tequal
5 2
15 :
|
1

0 2000 4000 6000 8000
tins
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Operational Analysis (3): Case 1

* Boundary conditions:

¢ THZO,sat constant, my,o ~ Qdecay(t) (with Q - mAhvap)

« Turbomachinery speed N is kept constant at design value

* Results:

¢ QCHX > Qdecay
« AP >0
« Consequences:

 Reactor will
cool down

* Th20.sat IS not
constant
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Operational Analysis (4): Case 2

* Boundary conditions:

* Myyo CcoOnstant, Ty, sq¢ follows the decay heat curve (Ah,q, ~ Qdecay(t))
« Turbomachinery speed N is kept constant at design value

* Results: 11 , , , . 500
* Qcux ~ Qdecay
1400
« AP = 0 reached
« Consequences: = 1300 2
c
R= .
- Cool down of S 1200
reactor must be
limited > 1100
control required ; )
5 10 15 20 25

tin10° s
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Operational Analysis (5): Case 3 and 4

« Case 3
* Ty20,sat CONStANt, My20 ~ Qgecay (t) (like case 1)
- Turbomachinery speed N is controlled to keep Qcyx = Qaecay
* Result: AP > 0, but compressor surge occurs
* Case 4
- Turbomachinery speed is controlled to keep Qcux = Quecay

* Tuz0sat 1S gradually decreased to 200 °C (less than in case 2, to avoid
AP < 0)

* My is calculated to match Qgecqy = MAhyg,
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Operational Analysis (6): Case 4: Results + Consequences

* Qcux ~ Qaecay = itis possible to follow the decay heat curve

AP > 0 - always self-propelling

* In the long term single units must be switched off because AP — 0

* No compressor
surge
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NPP simulations: First results

4 systems (with adaption to decay heat curve)
 Control of turbomachinery speed and subsequent shutdown

« Systems can run for more than 72 h (AP > 0)

Decay power compared to

thermal power of all systems Shaft speed of all systems

50 ' ' - 25
decay -\ —1
40 ———CO,-sum| | 20 2]
= S
= 30 E_ 15
£ c
o 20 shutdown of = 10
47 systems <
10 "4 . 5
8
0 ' ' : 0
0 20 40 60 0
tinh tinh
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Conclusion

* Modelling of components
« Operational analysis
» Shaft speed control enables smooth operation
* No compressor surge due to cool-down
 Future Work
» Further improvement of models, input etc. (next presentation)
» Analysis of varying ambient temperature (next presentation)
 Simulation of the sCO,-HeRo-System attached to the NPP (in progress)
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Introduction (4): Glass Model with sCO,-HeRo-System
H
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Modelling of the compact heat exchanger (CHX)

Source: M. Stratz, IKE
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Modelling of the radial turbomachinery (RT)

Cold Main
Flow

Thrust
Bearing

Hot Main
Flow

Floating
Bearing

Compressorl | Alternator | | Turbine

Source: A. Hacks, UDE
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Radial turbomachinery (1): Previous status of ATHLET

 Junction related Iumped turbine design input variables
point data
parameter model Pin,0» Pout,0 M, R, Dot (Pin)
. . pin,ﬂ! pau.t,()
« Axial turbine model To» Mo» Po, D |
 Representation in conservation Stodola’s Cone
equations: Ap and Q Lal“’
e P = n,mhh;, = =2 Ap ———p
= nNemAan;g = nem 5 | out
. Radial machines (previous eﬂ'lciencyjorrection output variables
modifications) N —sAh —{ h,,
- 7 for radial turbines \)‘ p
« Ap not adapted (Stodola’s cone law) Source: J. Venker, IKE

» No suitable radial compressor model
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Radial turbomachinery (1): Improvement of ATHLET

p -1
Zcr'rﬂ' - Zr];[ I—Z;V ]

.,

Table 9: Dimensionless parameters of different approaches for establishing the
turbomachinery performance map.

(Eq. 1)

P -P 1+}/] y-1

-

—

IG 1GZ BNI

i m T, ma w2, T, mywZ 1,
a
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* In terms of units, the diameter D is missing to be dimensionless (mgq: 1/D?, Nyg4: D)

New approach

myngZ, T,

n,F,

N
NS AP

AH,
n.aL I,

* [1]: Pham et al. (2016) An approach for establishing the performance maps of the sc-CO2 compressor: Development
and qualification by means of CFD simulations. International Journal of Heat and Fluid Flow, 61, 379-94.
https://doi.org/10.1016/j.ijheatfluidflow.2016.05.017
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Radial turbomachinery (2): Improvement of ATHLET

« Similarity approach (Buckingham’s -Theorem)

Ahls
C2

» Dimensionless Performance Map: (n,—=) = f(Ma,, Mag)

* Dimensionless numbers are constant for similar operational points

M = _ND _ [(ee
Ma, = D7e and Mag = ; with speed of sound ¢ = (5.0)5

» Entropy necessary as additional thermodynamic property

oy = Z—p should not be used in similarity approach (especially for liquid CO,)

» Power is calculated via the entropy (higher accuracy in the 2-phase
region)

» Model is applicable for compressors and turbines as long as performance
maps are available
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Design point (DP): At maximum heat load
— this analysis L optimum

OQ 280 200

c

>

T 240 500

Q =
= 220 400 ¢
g Q
8 200 300
[

= 200

2 180

S 100

2 160

1.5 2 2.5 3
pressure ratio of compressor

DPypt # DPgpaiysis due to application of compressor map
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Boundary conditons

T e T e s Csse s T Case s cases
declining constant declining declining calculated

at saturation point of steam (x=1) for all cases

constant declining constant constant declining

not constant (result) constant at design value

constant at design value except for 3b (increasing)

QCHX / Qdecay (result) >1 =1 1
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Operational Analysis (4): Case 3 and 4: Boundary Conditions

« Case 3 (a+h)
* Ty20,sat CONStANt, My20 ~ Qgecay (t) (like case 1)
 Turbomachinery speed N is controlled to keep ATs,p n20 CONStant
* case 3b = case 3a + T ompressor,in IS iINCreased

* Case 4
 Turbomachinery speed is controlled to keep ATy, 20 CONStant

* Tuz0saqt 1S decreased to 200 °C (guessed) at end of the simulation
(decrease is shaped like decay heat curve)

* My is calculated to match Qgecqy = MAhyg,
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Operational Analysis (5): Case 3 + 4. Results + Consequences

* coo 1S decling: case 3a < case 3b < case 4

 Crossing of surge line and stop of simulation in case 3a and 3b

0.15F L T
3a "
--=-3b '
.......... 4 I
I
04 |" ~ ~surge !
’ 1
% " Mac},const
X E_ —
£ <
&
0.05
10 : : : : 0 : : :
10 20 30 40 50 0 1 2 3 4
tin 103 s Ma %1078
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Case 4
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