

University of Stuttgart

Institute of Nuclear Technology and Energy Systems

Operational Analysis of a Self-Propelling Heat Removal System using Supercritical CO₂ with ATHLET

M. Hofer, M.Buck, J. Starflinger

IKE

4th European sCO₂ Conference, Prague, 23.03.2021

Outline

- 1. Introduction
- 2. Modelling
 - i. Compact heat exchanger
 - ii. Ultimate heat sink
 - iii. Radial turbomachinery
- 3. Operational analysis
- 4. Conclusion and future work

Introduction (1): Overview and motivation

- Motivation
 - Fukushima
 - Scientific Trend: new heat removal systems
- Active Heat Removal System with Turbo-Compressor
 - sCO₂ as a working fluid
 - Air as ultimate heat sink
 - Self-propelling
 - Very compact

Introduction (2): Concept of heat removal system

Introduction (3): Former ATHLET Simulations

Decay power compared to thermal power of heat removal system

Introduction (4): Overall Objective

- Enable ATHLET to simulate sCO₂-Brayton-Cycles and their interaction with existing or future BWR, PWR, VVER, etc. for safety analyses
 - ATHLET code extensions
 - Validation experiments
 - NPP and cycle simulations
- Objective of this presentation
 - Overview of the code extensions
 - Operation strategies of the sCO₂-Brayton-Cycle (under varying steam side boundary conditions)

Compact heat exchanger: Representative channel model

- Only one representative channel pair is modelled
- Correlations for heat transfer coefficients and pressure drop (sCO₂: Gnielinski and Colebrook)
- Inlet and outlet $\Delta p_{plenum} = \xi_{Form} \dot{m}^2/(2\rho)$

Ultimate heat sink: Simplified model

- Modelling similar to CHX (only one pipe of the plate-fin HX is modelled)
- In this analysis the air side heat transfer is not modelled explicitly
- \dot{Q}_{UHS} is controlled to keep the compressor inlet temperature constant
- · In reality this is achieved by varying the fan speed

UHS at glass model: Experimental test-loop in Essen (Germany) Source: A. Hacks, UDE

Radial turbomachinery (1): Real gas approach

- Performance map for specific thermodynamic inlet condition (e.g. design)
- Real gas similarity approach for different conditions [1]
- Dimensionless Performance Map: $(\eta, \frac{\Delta h_{is}}{c^2}) = f(Ma_a, Ma_\theta)$

•
$$M_a = \frac{\dot{m}}{\rho D^2 c}$$
 and $M_{\theta} = \frac{ND}{c}$ with speed of sound $c = \sqrt{\left(\frac{\delta p}{\delta \rho}\right)_s}$

- speed of sound *c* should be used instead of the heat capacity ratio $\gamma = \frac{c_p}{c_v}$ in the similarity approach (especially for liquid-like CO₂)
- [1]: Pham et al. (2016) An approach for establishing the performance maps of the sc-CO2 compressor: Development and qualification by means of CFD simulations. *International Journal of Heat and Fluid Flow*, 61, 379–94.
 https://doi.org/10.1016/j.ijheatfluidflow.2016.05.017
- Model in this work is mathematically identical to [1]

Radial turbomachinery (2): This analysis

- Compressor

 - Conservative approach because pressure ratio and efficiency are lower compared to large-scale machines
- $nes Ma_{\Phi} Ma_{a}^{0.15}$

- Turbine
 - Stodola's cone law with efficiency correlation for radial machines
 - Performance map of the glass model turbine cannot be used because at the design point of the large-scale cycle the rotational speed of both machines is different

Operational Analysis (1): ATHLET nodalisation

- \dot{Q}_{UHS} is controlled to keep $T_{compressor,in}$ at its design value
- Variation of H₂O side boundary conditions

Operational Analysis (2): Start and end of analysis

- Simulation starts at t_{equal} ($\dot{Q}_{HeRo} = \dot{Q}_{decay}$)
- Simulation end at 100 000 s = 27.8 h

Operational Analysis (3): Case 1

- Boundary conditions:
 - $T_{H20,sat}$ constant, $\dot{m}_{H20} \sim \dot{Q}_{decay}(t)$ (with $\dot{Q} = \dot{m}\Delta h_{vap}$)
 - Turbomachinery speed N is kept constant at design value

Operational Analysis (4): Case 2

- Boundary conditions:
 - \dot{m}_{H20} constant, $T_{H20,sat}$ follows the decay heat curve ($\Delta h_{vap} \sim \dot{Q}_{decay}(t)$)
 - Turbomachinery speed N is kept constant at design value
- Results:
 - $\dot{Q}_{CHX} \sim \dot{Q}_{decay}$
 - $\Delta P = 0$ reached
- Consequences:
 - Cool down of reactor must be limited → control required

Operational Analysis (5): Case 3 and 4

- Case 3
 - $T_{H20,sat}$ constant, $\dot{m}_{H20} \sim \dot{Q}_{decay}(t)$ (like case 1)
 - Turbomachinery speed N is controlled to keep $\dot{Q}_{CHX} \approx \dot{Q}_{decay}$
 - Result: $\Delta P > 0$, but compressor surge occurs
- Case 4
 - Turbomachinery speed is controlled to keep $\dot{Q}_{CHX} \approx \dot{Q}_{decay}$
 - $T_{H2O,sat}$ is gradually decreased to 200 °C (less than in case 2, to avoid $\Delta P < 0$)
 - \dot{m}_{H20} is calculated to match $\dot{Q}_{decay} = \dot{m} \Delta h_{vap}$

Operational Analysis (6): Case 4: Results + Consequences

- $\dot{Q}_{CHX} \sim \dot{Q}_{decay} \rightarrow$ it is possible to follow the decay heat curve
- $\Delta P > 0 \rightarrow$ always self-propelling
- In the long term single units must be switched off because $\Delta P \rightarrow 0$

NPP simulations: First results

- 4 systems (with adaption to decay heat curve)
- Control of turbomachinery speed and subsequent shutdown
- Systems can run for more than 72 h ($\Delta P > 0$)

Conclusion

- Modelling of components
- Operational analysis
 - Shaft speed control enables smooth operation
 - No compressor surge due to cool-down
- Future Work
 - Further improvement of models, input etc. (next presentation)
 - Analysis of varying ambient temperature (next presentation)
 - Simulation of the sCO₂-HeRo-System attached to the NPP (in progress)

The presented work is funded by the **German Ministry for** Economic Affairs and Energy (BMWi. Project no. 1501557) on basis of a decision by the German Bundestag.

Federal Ministry for Economic Affairs and Energy

THANK YOU

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847606. This text reflects only the author's views and the Commission is not liable for any use that may be made of the information contained therein.

University of Stuttgart Institute of Nuclear Technology and Energy Systems

Thank you!

Markus Hofer

e-mail markus.hofer@ike.uni-stuttgart.de phone +49 (0) 711 685-60855 fax +49 (0) 711 685-62010

University of Stuttgart Institut für Kernenergetik und Energiesysteme Pfaffenwaldring 31 • 70569 Stuttgart

Introduction (4): Glass Model with sCO₂-HeRo-System

Modelling of the compact heat exchanger (CHX)

Source: M. Strätz, IKE

Modelling of the radial turbomachinery (RT)

Source: A. Hacks, UDE

Radial turbomachinery (1): Previous status of ATHLET

- Junction related lumped parameter model
- Axial turbine model
- Representation in conservation equations: Δp and Q
- $P = \eta_t \dot{m} \Delta h_{is} = \eta_t \dot{m} \frac{\Delta p}{\tilde{\rho}}$
- Radial machines (previous modifications)
 - η for radial turbines
 - Δp not adapted (Stodola's cone law)
 - No suitable radial compressor model

Source: J. Venker, IKE

Radial turbomachinery (1): Improvement of ATHLET

$$Z_{cr}T_{cr} = Z_t T_t \left(\frac{1+\gamma}{2}\right)^{-1} \qquad (\text{Eq. 1}) \qquad P_{cr} = P_t \left(\frac{1+\gamma}{2}\right)^{-\frac{\gamma}{\gamma-1}} \qquad a = \sqrt{n_s ZRT}$$

Table 9: Dimensionless parameters of different approaches for establishing the turbomachinery performance map.

	IG	IGZ	BNI	New approach
m _{ad}	$\frac{\dot{m}\sqrt{\gamma rT_t}}{\gamma P_t}$	$\frac{\dot{m}\sqrt{\gamma r Z_t T_t}}{\gamma P_t}$	$\frac{\dot{m}\sqrt{\gamma r Z_{cr} T_{cr}}}{\gamma P_{cr}}$	$\frac{\dot{m}\sqrt{n_s r Z_t T_t}}{n_s P_t}$
N _{ad}	$\frac{N}{\sqrt{\gamma r T_t}}$	$\frac{N}{\sqrt{\gamma r Z_t T_t}}$	$\frac{N}{\sqrt{\gamma r Z_{cr} T_{cr}}}$	$\frac{N}{\sqrt{n_s r Z_t T_t}}$
ΔH_{ad}	$\frac{\Delta H_t}{\gamma r T_t}$	$\frac{\Delta H_t}{\gamma r Z_t T_t}$	$\frac{\Delta H_t}{\gamma r Z_{cr} T_{cr}}$	$\frac{\Delta H_t}{n_s r Z_t T_t}$

• In terms of units, the diameter D is missing to be dimensionless $(m_{ad}: 1/D^2, N_{ad}: D)$

 [1]: Pham et al. (2016) An approach for establishing the performance maps of the sc-CO2 compressor: Development and qualification by means of CFD simulations. *International Journal of Heat and Fluid Flow*, 61, 379–94.
https://doi.org/10.1016/j.ijheatfluidflow.2016.05.017

University of Stuttgart – Institute of Nuclear Technology and Energy Systems

Radial turbomachinery (2): Improvement of ATHLET

- Similarity approach (Buckingham's π -Theorem)
- Dimensionless Performance Map: $(\eta, \frac{\Delta h_{is}}{c^2}) = f(Ma_a, Ma_{\theta})$
- Dimensionless numbers are constant for similar operational points

•
$$Ma_a = \frac{\dot{m}}{\rho D^2 c}$$
 and $Ma_{\theta} = \frac{ND}{c}$ with speed of sound $c = \sqrt{\left(\frac{\delta p}{\delta \rho}\right)_s}$

- Entropy necessary as additional thermodynamic property
- $\gamma = \frac{c_p}{c_v}$ should not be used in similarity approach (especially for liquid CO₂)
- Power is calculated via the entropy (higher accuracy in the 2-phase region)
- Model is applicable for compressors and turbines as long as performance maps are available

Design point (DP): At maximum heat load

 $DP_{opt} \neq DP_{analysis}$ due to application of compressor map

Boundary conditons

	Case 1	Case 2	Case 3a	Case 3b	Case 4		
т _{н20}	declining	constant	declining	declining	calculated		
h _{in,H20}	at saturation point of steam $(x=1)$ for all cases						
$\vartheta_{in,H20}$	constant	declining	constant	constant	declining		
$\Delta T_{sub,H20}$	not constant (result)		constant at design value				
$\Delta T_{PP,UHS}$	constant at design value except for 3b (increasing)						
Ν	constant at design value		controlled to match $\Delta T_{sub,H20}$				
Q _{UHS}	controlled to match $\Delta T_{PP,UHS}$						
Ż _{CHX} / Ż _{decay} (result)	>1	≈1		1			

Operational Analysis (4): Case 3 and 4: Boundary Conditions

- Case 3 (a + b)
 - $T_{H20,sat}$ constant, $\dot{m}_{H20} \sim \dot{Q}_{decay}(t)$ (like case 1)
 - Turbomachinery speed N is controlled to keep $\Delta T_{sub,H2O}$ constant
 - case $3b = case 3a + T_{compressor,in}$ is increased
- Case 4
 - Turbomachinery speed is controlled to keep $\Delta T_{sub,H20}$ constant
 - $T_{H20,sat}$ is decreased to 200 °C (guessed) at end of the simulation (decrease is shaped like decay heat curve)
 - \dot{m}_{H20} is calculated to match $\dot{Q}_{decay} = \dot{m} \Delta h_{vap}$

Operational Analysis (5): Case 3 + 4: Results + Consequences

- \dot{m}_{CO2} is decling: case 3a < case 3b < case 4
- Crossing of surge line and stop of simulation in case 3a and 3b

Case 4

