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• Motivation

• Fukushima 

• Scientific Trend: new heat removal systems

• Active Heat Removal System with Turbo-Compressor

• sCO2 as a working fluid

• Air as ultimate heat sink

• Self-propelling

• Very compact 
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Introduction (1): Overview and motivation
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Introduction (2): Concept of heat removal system
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Introduction (3): Former ATHLET Simulations

Decay power compared to thermal power of heat removal system
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• Enable ATHLET to simulate sCO2-Brayton-Cycles and their interaction 

with existing or future BWR, PWR, VVER, etc. for safety analyses

• ATHLET code extensions 

• Validation experiments

• NPP and cycle simulations

• Objective of this presentation

• Overview of the code extensions

• Operation strategies

of the sCO2-Brayton-Cycle

(under varying steam side

boundary conditions) 
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Introduction (4): Overall Objective

16.03.2021
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• Only one representative channel pair is modelled

• Correlations for heat transfer coefficients and pressure drop

(sCO2: Gnielinski and Colebrook)

• Inlet and outlet Δ𝑝𝑝𝑙𝑒𝑛𝑢𝑚 = 𝜉𝐹𝑜𝑟𝑚 ሶ𝑚2/(2𝜌)
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Compact heat exchanger: Representative channel model

Simulation of

experimental CHX



• Modelling similar to CHX (only one pipe of the plate-fin HX is modelled)

• In this analysis the air side heat transfer is not modelled explicitly

• ሶ𝑄𝑈𝐻𝑆 is controlled to keep the compressor inlet temperature constant

• In reality this is achieved by varying the fan speed
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Ultimate heat sink: Simplified model

UHS at glass model:

Experimental test-loop

in Essen (Germany)

Source: A. Hacks, UDE



• Performance map for specific thermodynamic inlet condition (e.g. design)

• Real gas similarity approach for different conditions [1]

• Dimensionless Performance Map: (𝜂,
Δℎ𝑖𝑠

𝑐2
) = 𝑓(𝑀𝑎𝑎 , 𝑀𝑎𝜃)

• 𝑀𝑎 =
ሶ𝑚

𝜌𝐷2𝑐
and 𝑀𝜃 =

𝑁𝐷

𝑐
with speed of sound 𝑐 =

𝛿𝑝

𝛿𝜌 𝑠

• speed of sound 𝑐 should be used instead of the heat capacity ratio 𝛾 =
𝑐𝑝

𝑐𝑣

in the similarity approach (especially for liquid-like CO2)

• [1]: Pham et al. (2016) An approach for establishing the performance maps of the sc-CO2 compressor: Development 

and qualification by means of CFD simulations. International Journal of Heat and Fluid Flow, 61, 379–94. 

https://doi.org/10.1016/j.ijheatfluidflow.2016.05.017

• Model in this work is mathematically identical to [1]
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Radial turbomachinery (1): Real gas approach

https://doi.org/10.1016/j.ijheatfluidflow.2016.05.017


• Compressor

• Dimensionless performance

map of the glass model

compressor

• Conservative approach

because pressure ratio

and efficiency are lower

compared to large-scale machines

• Turbine

• Stodola’s cone law with efficiency correlation for radial machines

• Performance map of the glass model turbine cannot be used because at 

the design point of the large-scale cycle the rotational speed of both 

machines is different
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Radial turbomachinery (2): This analysis



• ሶ𝑄𝑈𝐻𝑆 is controlled to keep 𝑇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖𝑛 at its design value

• Variation of H2O side boundary conditions
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Operational Analysis (1): ATHLET nodalisation

ሶ𝑄𝑈𝐻𝑆
𝑁

ሶ𝑚𝐻2𝑂

𝑝𝐻2𝑂
ℎ𝐻2𝑂,𝑥=1

𝑇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖𝑛



• Simulation starts at 𝑡𝑒𝑞𝑢𝑎𝑙 ( ሶ𝑄𝐻𝑒𝑅𝑜 = ሶ𝑄𝑑𝑒𝑐𝑎𝑦)

• Simulation end at 100 000 s = 27.8 h
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Operational Analysis (2): Start and end of analysis
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Operational Analysis (3): Case 1 

• Boundary conditions:

• 𝑇𝐻2𝑂,𝑠𝑎𝑡 constant, ሶ𝑚𝐻2𝑂 ~ ሶ𝑄𝑑𝑒𝑐𝑎𝑦(t) (with ሶ𝑄 = ሶ𝑚∆ℎ𝑣𝑎𝑝)

• Turbomachinery speed 𝑁 is kept constant at design value

• Results:

• ሶ𝑄𝐶𝐻𝑋 > ሶ𝑄𝑑𝑒𝑐𝑎𝑦

• ∆𝑃 > 0

• Consequences:

• Reactor will

cool down

• 𝑇𝐻2𝑂,𝑠𝑎𝑡 is not

constant

Thermal power and excess power
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Operational Analysis (4): Case 2 

• Boundary conditions:

• ሶ𝑚𝐻2𝑂 constant, 𝑇𝐻2𝑂,𝑠𝑎𝑡 follows the decay heat curve (∆ℎ𝑣𝑎𝑝 ~ ሶ𝑄𝑑𝑒𝑐𝑎𝑦(t))

• Turbomachinery speed 𝑁 is kept constant at design value

• Results:

• ሶ𝑄𝐶𝐻𝑋 ~ ሶ𝑄𝑑𝑒𝑐𝑎𝑦

• ∆𝑃 = 0 reached

• Consequences:

• Cool down of

reactor must be

limited →

control required
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Operational Analysis (5): Case 3 and 4

• Case 3

• 𝑇𝐻2𝑂,𝑠𝑎𝑡 constant, ሶ𝑚𝐻2𝑂 ~ ሶ𝑄𝑑𝑒𝑐𝑎𝑦(t) (like case 1)

• Turbomachinery speed 𝑁 is controlled to keep ሶ𝑄𝐶𝐻𝑋 ≈ ሶ𝑄𝑑𝑒𝑐𝑎𝑦

• Result: ∆𝑃 > 0, but compressor surge occurs

• Case 4

• Turbomachinery speed is controlled to keep ሶ𝑄𝐶𝐻𝑋 ≈ ሶ𝑄𝑑𝑒𝑐𝑎𝑦

• 𝑇𝐻2𝑂,𝑠𝑎𝑡 is gradually decreased to 200 °C (less than in case 2, to avoid 

∆𝑃 < 0)

• ሶ𝑚𝐻2𝑂 is calculated to match ሶ𝑄𝑑𝑒𝑐𝑎𝑦 = ሶ𝑚∆ℎ𝑣𝑎𝑝
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Operational Analysis (6): Case 4: Results + Consequences

• ሶ𝑄𝐶𝐻𝑋 ~ ሶ𝑄𝑑𝑒𝑐𝑎𝑦 → it is possible to follow the decay heat curve

• ∆𝑃 > 0→ always self-propelling

• In the long term single units must be switched off because ∆𝑃 → 0

• No compressor

surge



4 systems (with adaption to decay heat curve)

• Control of turbomachinery speed and subsequent shutdown

• Systems can run for more than 72 h (∆𝑃 > 0)
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NPP simulations: First results
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Shaft  speed of  a l l  systems

Decay power compared to

thermal power of  a l l  systems

shu tdown o f  

sys tems



• Modelling of components

• Operational analysis

• Shaft speed control enables smooth operation

• No compressor surge due to cool-down

• Future Work

• Further improvement of models, input etc. (next presentation)

• Analysis of varying ambient temperature (next presentation)

• Simulation of the sCO2-HeRo-System attached to the NPP (in progress)
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Conclusion
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Introduction (4): Glass Model with sCO2-HeRo-System

Source: A. Hacks, UDE

 



16.03.2021University of Stuttgart – Institute of Nuclear Technology and Energy Systems 23

Modelling of the compact heat exchanger (CHX)

Source: M. Strätz, IKE
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Modelling of the radial turbomachinery (RT)

Source: A. Hacks, UDE



• Junction related lumped

parameter model

• Axial turbine model

• Representation in conservation

equations: Δ𝑝 and ሶ𝑄

• 𝑃 = 𝜂𝑡 ሶ𝑚Δℎ𝑖𝑠 = 𝜂𝑡 ሶ𝑚
Δp

෥𝜌

• Radial machines (previous

modifications)

• 𝜂 for radial turbines 

• Δ𝑝 not adapted (Stodola’s cone law)

• No suitable radial compressor model

16.03.2021University of Stuttgart – Institute of Nuclear Technology and Energy Systems 25

Radial turbomachinery (1): Previous status of ATHLET

Source: J. Venker, IKE



• In terms of units, the diameter D is missing to be dimensionless (𝑚𝑎𝑑: 1/𝐷
2, 𝑁𝑎𝑑: 𝐷)

• [1]: Pham et al. (2016) An approach for establishing the performance maps of the sc-CO2 compressor: Development 

and qualification by means of CFD simulations. International Journal of Heat and Fluid Flow, 61, 379–94. 

https://doi.org/10.1016/j.ijheatfluidflow.2016.05.017
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Radial turbomachinery (1): Improvement of ATHLET

New approach

https://doi.org/10.1016/j.ijheatfluidflow.2016.05.017


• Similarity approach (Buckingham´s 𝝅-Theorem)

• Dimensionless Performance Map: (𝜂,
Δℎ𝑖𝑠

𝑐2
) = 𝑓(𝑀𝑎𝑎 , 𝑀𝑎𝜃)

• Dimensionless numbers are constant for similar operational points

• 𝑀𝑎𝑎 =
ሶ𝑚

𝜌𝐷2𝑐
and 𝑀𝑎𝜃 =

𝑁𝐷

𝑐
with speed of sound 𝑐 =

𝛿𝑝

𝛿𝜌 𝑠

• Entropy necessary as additional thermodynamic property

• 𝛾 =
𝑐𝑝

𝑐𝑣
should not be used in similarity approach (especially for liquid CO2)

• Power is calculated via the entropy (higher accuracy in the 2-phase 

region)

• Model is applicable for compressors and turbines as long as performance 

maps are available
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Radial turbomachinery (2): Improvement of ATHLET
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Design point (DP): At maximum heat load

this analysis optimum

𝐷𝑃𝑜𝑝𝑡 ≠ 𝐷𝑃𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 due to application of compressor map

pressure ratio of compressor
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Boundary conditons

Case 1 Case 2 Case 3a Case 3b Case 4

ሶ𝒎𝑯𝟐𝑶 declining constant declining declining calculated

𝒉𝒊𝒏,𝑯𝟐𝑶 at saturation point of steam (𝑥=1) for all cases

𝝑𝒊𝒏,𝑯𝟐𝑶 constant declining constant constant declining

𝚫𝑻𝒔𝒖𝒃,𝑯𝟐𝑶 not constant (result) constant at design value

𝚫𝑻𝑷𝑷,𝑼𝑯𝑺 constant at design value except for 3b (increasing)

𝑵 constant at design value controlled to match Δ𝑇𝑠𝑢𝑏,𝐻2𝑂

ሶ𝑸𝑼𝑯𝑺 controlled to match Δ𝑇𝑃𝑃,𝑈𝐻𝑆

ሶ𝑸𝑪𝑯𝑿 / ሶ𝑸𝒅𝒆𝒄𝒂𝒚 (result) >1 ≈1 1
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Operational Analysis (4): Case 3 and 4: Boundary Conditions 

• Case 3 (a + b)

• 𝑇𝐻2𝑂,𝑠𝑎𝑡 constant, ሶ𝑚𝐻2𝑂 ~ ሶ𝑄𝑑𝑒𝑐𝑎𝑦(t) (like case 1)

• Turbomachinery speed 𝑁 is controlled to keep Δ𝑇𝑠𝑢𝑏,𝐻2𝑂 constant

• case 3b = case 3a + 𝑇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖𝑛 is increased

• Case 4

• Turbomachinery speed is controlled to keep Δ𝑇𝑠𝑢𝑏,𝐻2𝑂 constant

• 𝑇𝐻2𝑂,𝑠𝑎𝑡 is decreased to 200 °C (guessed) at end of the simulation 

(decrease is shaped like decay heat curve)

• ሶ𝑚𝐻2𝑂 is calculated to match ሶ𝑄𝑑𝑒𝑐𝑎𝑦 = ሶ𝑚∆ℎ𝑣𝑎𝑝
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Operational Analysis (5): Case 3 + 4: Results + Consequences

• ሶ𝑚𝐶𝑂2 is decling: case 3a < case 3b < case 4

• Crossing of surge line and stop of simulation in case 3a and 3b
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Case 4


