## sCO<sub>2</sub> Power Cycle Design without Heat Source Limitation: Solar Thermal Particle Technology in the CARBOSOLA Project Lukas Heller, DLR – Institute of Solar Research Stefan Glos, Siemens Energy Reiner Buck, DLR – Institute of Solar Research 23.03.2021



## Knowledge for Tomorrow

## **The CARBOSOLA Project**

Main Objectives:

- Assess techno-economic potential of sCO<sub>2</sub> power cycles
  - Use case 1: GT bottoming cycle,  $T_{sCO2} < 550$  °C
  - Use case 2: CSP,  $T_{sCO2} > 600 \text{ °C}$
- Build Europe's most powerful testing facility for sCO<sub>2</sub> components
  - *T*<sub>max</sub> ≈ 650 °C
  - *p*<sub>max</sub> ≈ 300 bar
  - $\dot{Q}_{\text{heater}} \approx 1.5 \text{ MW}_{\text{t}}$
- Design demonstrator
  - *T*<sub>max</sub> ≈ 500 °C
  - $\dot{Q}_{\text{heater}} \approx 20 \text{ MW}_{\text{t}}$





aufgrund eines Beschlusses des Deutschen Bundestages



## Assess techno-economic potential of CSP sCO<sub>2</sub> plants

This study:

- 1. Define boundary conditions and technologies
- 2. Develop simplified techno-economic models of chosen sCO<sub>2</sub> cycles and CSP technologies
- 3. Run a large number of simulations with variations of the main parameters
- 4. Identify the variants with the highest economic potential
- 5. Compare results with steam reference system and check sensitivity for cost models

Next steps:



## Assess techno-economic potential of CSP sCO<sub>2</sub> plants

This study:

- 1. Define boundary conditions and technologies
- 2. Develop simplified techno-economic models of chosen sCO<sub>2</sub> cycles and CSP technologies
- 3. Run a large number of simulations with variations of the main parameters
- 4. Identify the variants with the highest economic potential
- 5. Compare results with steam reference system and check sensitivity for cost models

Next steps:



## **Solar Particle Technology**

- Heat transfer medium: Bauxite particles
- Particle temperatures can be chosen freely within the technical limits of the power block (> 1000 °C)
  - Enables high-temperature power cycle
  - Smaller storage, HXs...
- Low cost material
- Enables direct absorption solar receiver (high efficiency)
- Easy handling
- Additional variants employing state of the art molten salt as the heat transfer medium were modeled. Results for these can be found in the paper.





## **Solar Plant Boundary Conditions**

| Location                         | Postmasburg, South Africa                           |  |  |
|----------------------------------|-----------------------------------------------------|--|--|
| Design semi-net capacity         | 115 MW <sub>e</sub>                                 |  |  |
| Storage capacity                 | 12 h                                                |  |  |
| Cooling                          | dry                                                 |  |  |
| Design point ambient temperature | 19 °C                                               |  |  |
| Hot particle temperature         | 900 °C                                              |  |  |
| Cold particle temperature        | Defined by sCO2 cycle and<br>primary heat exchanger |  |  |





Source: Google Earth

### **Power Cycle Variants**





## Assess techno-economic potential of CSP sCO<sub>2</sub> plants

This study:

- 1. Define boundary conditions and technologies
- 2. Develop simplified techno-economic models of chosen  $sCO_2$  cycles and CSP technologies
- 3. Run a large number of simulations with variations of the main parameters
- 4. Identify the variants with the highest economic potential
- 5. Compare results with steam reference system and check sensitivity for cost models

Next steps:



## **Power Block Parameters**

• For all 10 cycle variants, the following parameters were varied, where applicable:

| Parameter                  | Unit   | Range     | Comment                    |  |
|----------------------------|--------|-----------|----------------------------|--|
| TIT                        | [°C]   | 550700    | )                          |  |
| TIP                        | [bar]  | 260 ; 300 |                            |  |
| CIP                        | [bar]  | 45100     | Extreme values only in     |  |
|                            |        |           | partial cooling cycles     |  |
| TTD Recuperator            | [K]    | 5         | Terminal temperature       |  |
|                            |        |           | difference in recuperators |  |
| U*A <sub>cooler/IC</sub>   | [MW/K] | 18        |                            |  |
| <i>r</i> <sub>recomp</sub> | [%]    | 2545      | Recompression fraction     |  |
| TTD PHX,HP                 | [K]    | 5300      | Terminal temperature       |  |
|                            |        |           | difference in HP-PHX       |  |
| TTD PHX,LP                 | [K]    | 5300      | Terminal temperature       |  |
|                            |        |           | difference in reheater     |  |

#### Ebsilon Professional v14 model



<u>Design point</u> cycle efficiency and parameters for component cost model (T, p,  $\dot{Q}$ , P,  $U^*A$ ,  $\dot{V}$ , ...)





## **Economic model**



# Assess techno-economic potential of CSP sCO<sub>2</sub> plants

#### This study:

- 1. Define boundary conditions and technologies
- 2. Develop simplified techno-economic models of chosen sCO<sub>2</sub> cycles and CSP technologies
- 3. Run a large number of simulations with variations of the main parameters
- 4. Identify the variants with the highest economic potential
- 5. Compare results with steam reference system and check sensitivity for cost models

Next steps:





### **Results: LCOE vs. Power block efficiency**





### **Results: LCOE vs. Power block efficiency (2): Cycle selection**

Only the lowest LCOE configurations

 IC cycles (03, 04, 07, 08) perform worse than variants without IC.

sCO2 cycles 01\_simple 02\_simple\_RH 03\_simple\_IC 04\_simple\_RH\_IC 05\_recomp 06\_recomp\_RH 07\_recomp\_IC 08\_recomp\_RH\_IC 09\_partC\_RH 10\_partC

- RH cycles (02, 06, 09) generally render higher LCOEs than their non-RH counterparts. An exception are partial cooling cycles with and without RH, which perform similarly.
- For detailed modeling, the following cycles are therefore selected:
  - 01: simple recuperated
  - 05: simple recompression
  - 09/10: partial cooling





### **Results: LCOE vs. Power block efficiency (3): TITs**

- Higher TITs are not economical according to the current cost model ("Carbo\_02").
- Even if the cost of the PHX is modeled to be temperature independent, there is no clear economic benefit of higher TITs (not shown).





# Assess techno-economic potential of CSP sCO<sub>2</sub> plants

#### This study:

- 1. Define boundary conditions and technologies
- 2. Develop simplified techno-economic models of chosen sCO<sub>2</sub> cycles and CSP technologies
- 3. Run a large number of simulations with variations of the main parameters
- 4. Identify the variants with the highest economic potential
- 5. Compare results with steam reference system and check sensitivity for cost models

Next steps:



## **Comparison with Reference System Costs**

- 2 Reference steam cycles:
  - TIT = 550 °C, subcritical,  $\eta_{PB,net} = 42.6$  % (state of the art)
  - TIT = 600 °C, subcritical,  $\eta_{PB,net} = 43.9$  % (next generation)
- The steam generator cost for the reference steam system is calculated with the same cost model as for the sCO<sub>2</sub> systems.
- The reference system LCOE are considerably lower (~10 %) than those of the best performing sCO2 cycles.





## **Sensitivity Analysis: Lower PB Equipment Costs**

| Component                                 | Reference | sCO <sub>2</sub> | sCO <sub>2</sub> low |
|-------------------------------------------|-----------|------------------|----------------------|
| PHX cost                                  |           | Carbo_02         |                      |
| Coolers&IC                                |           |                  | Lower<br>boundary    |
| Compressors                               |           |                  |                      |
| Turbines                                  | Siemens   | Carbo_02         | Carbo 02             |
| Recuperators                              |           |                  | x 50 %               |
| Indirect costs (sCO <sub>2</sub> only)    |           |                  |                      |
| <i>LCOE</i> [USD-cent/(kW <sub>e</sub> h] | 9.4       | 10.6             | 9.4                  |

 To break even with steam reference plant: Costs for compressors, turbines and recuperators as well as the indirect costs would need to be lowered by 50 %.





Results: Why do these findings appear to disagree with those of other studies?

- Techno-*economic* comparisons with steam power blocks are rare (in CSP literature).
- If sCO<sub>2</sub> power block costs are not calculated but defined, those values as defined by literature are commonly much lower than those found in this study.
- Commonly, indirect costs for the power block are either omitted or estimated at much lower values.
- Sometimes, lower interest rates are assumed, which favors higher-performance configurations.
- Costs for certain sCO<sub>2</sub> equipment according to the CARBOSOLA designs was found to be higher than in some literature (e.g. for coolers, turbines, PHX).
  - Particle PHX cost models have a high uncertainty.



# Assess techno-economic potential of CSP sCO<sub>2</sub> plants

#### This study:

- 1. Define boundary conditions and technologies
- 2. Develop simplified techno-economic models of chosen sCO<sub>2</sub> cycles and CSP technologies
- 3. Run a large number of simulations with variations of the main parameters
- 4. Identify the variants with the highest economic potential
- 5. Compare results with steam reference system and check sensitivity for cost models

#### Next steps:



## **Conclusions and Outlook**

- A techno-economic model was developed to conduct simplified LCOE calculations for particlesCO<sub>2</sub> solar power plants.
- It was found that sCO<sub>2</sub> cycles with lower efficiencies than state of the art steam cycles render the lowest LCOE.
- The best performing variants still produce electricity at more than 10 % higher costs than steam reference cases.
- LCOE values of all systems, including the reference ones, seem high. This is partially caused by rather conservative financing assumptions and nonoptimized solar subsystems.

- An annual hourly energy yield model will be developed to evaluate the chosen variants more accurately. This includes:
  - Hourly simulation of the power cycle under real world ambient conditions.
  - Modeling and optimization of the solar field.



## **Thanks!**

## Any questions or comments?

Lukas.Heller@DLR.de



### Sources



## **Additional slides**



## **Cost models – PHX**

