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Commercial power generation using high-pressure, oxyfuel combustion is a potential
way of producing energy from fossil fuels with no greenhouse gas emissions.
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In a comparative review of emerging carbon capture and storage (CCS) technologies,
only the Allam-Fetvedt cycle was identified as only coal combustion technology which
could reduce the cost of electricity (Lockwood (2017)).

The high-pressures of the Allam-Fetvedt cycle and greater power density of sCO2

reduces the total footprint compared traditional power plants.
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Existing chemical kinetic mechanisms are validated using experimental data such as
laminar flame speed and ignition delay time.

Over the last 5 years, more ignition delay time data has been published allowing the
validation of chemical kinetic mechanisms at these conditions.

In this study, we model ignition delay time data using four existing mechanisms and
use the results to produce a new mechanism designed for high-pressure, sCO2

combustion.
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Modelling Procedure

The ignition delay time is an important combustion parameter which can be
experimentally determined using shock tubes or rapid compression machines.
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Modelling Procedure

The ignition delay time is an important combustion parameter which can be
experimentally determined using shock tubes or rapid compression machines.

As many ignition delay time datasets as available were collated for oxyfuel combustion
at pressures over 10 atm for methane, hydrogen and syngas.

These ignition delay times were modelled on Chemkin Pro using four chemical kinetic
mechanisms which were compared using quantitative analysis using the following
equation from Liu et al. (2019).
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𝑬 =
𝟏
𝑵%

𝒊"𝟏

𝑵
𝑿𝒔𝒊𝒎,𝒊 − 𝑿𝒆𝒙𝒑,𝒊

𝑿𝒆𝒙𝒑,𝒊
×𝟏𝟎𝟎
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Modelling Procedure

A series of sensitivity analyses were performed at temperatures where the agreement
between different mechanisms was poor, of the agreement between a mechanism and
the experimental data.
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Methane Datasets
Methane datasets studied.
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Dataset Reference Average Pressure 
/atm

Equivalence Ratio 
(F)

CO2 Dilution (%)

M1 Pryor et al. (2017) 29.6 1.00 85.00
M2 Barak et al. (2020) 79.9 1.00 36.50
M3 Karimi et al. (2019) 99.0 1.00 85.00
M4 Karimi et al. (2019) 97.0 0.50 80.00
M5 Karimi et al. (2019) 201.8 1.00 85.00
M6 Shao et al. (2019) 32.2 1.00 77.50
M7 Shao et al. (2019) 106.3 1.00 77.50
M8 Shao et al. (2019) 260.0 1.00 77.50
M9 Shao et al. (2019) 31.4 1.27 86.17
M10 Shao et al. (2019) 74.7 1.27 86.17
M11 Shao et al. (2019) 266.3 1.27 86.17

O. Pryor, B. Koroglu, S. Barak, J. Lopez, E. Ninnemann, L. Nash, S. Vasu, Ignition delay times of high pressure oxy-methane combustion with high levels of CO2 dilution,  Proceedings of ASME Turbo Expo 2017: 
Turbo-machinery Technical Conference and Exposition, Charlotte, NC, USA, 2017.
S. Barak, O. Pryor, E. Ninnemann, S. Neupane, S. Vasu, X. Lu, B. Forrest, Ignition delay times of oxy-syngas and oxy-methane in supercritical CO2 mixtures for direct-fired cycles, Journal of Engineering for Gas 
Turbines and Power 142 (2020).
M. Karimi, B. Ochs, Z.F. Liu, D. Ranjan, W.T. Sun, Measurement of methane autoignition delays in carbon dioxide and argon diluents at high pressure conditions, Combustion and Flame 204 (2019) 304-319.
J.K. Shao, R. Choudhary, D.E. Davidson, R.K. Hanson, S. Barak, S. Vasu, Ignition delay times of methane and hydrogen highly diluted in carbon dioxide at high pressures up to 300 atm, Proceedings of the
Combustion Institute 37 (2019) 4555-4562.



Methane Datasets

Quantitative analysis of methane datasets.
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Aramco 2.0 DTU GRI 3.0 USC II
M1 41.47 37.98 76.11 17.04
M2 17.10 12.60 54.37 9.55
M3 24.85 27.18 54.76 20.49
M4 14.26 13.44 56.66 8.24
M5 9.53 7.35 32.49 45.53
M6 60.09 47.06 23.63 38.39
M7 15.02 16.64 43.26 20.65
M8 26.87 37.65 204.32 323.56
M9 94.06 99.87 31.97 56.38
M10 18.91 25.79 57.11 13.79
M11 3.99 24.03 32.53 125.37
Average 29.65 31.78 60.66 61.73
No. Best Fit 3 1 2 5
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Methane Datasets

Why is there a large discrepancy between the performance of Aramco 2.0 and DTU,
and GRI and USC II at high-pressures?
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Methane Datasets
Adding the CH3O2 Chemistry from Aramco 2.0 into the USC II mechanism significantly
reduces the model's ignition delay times at these temperatures.
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Sequential changes to USC II; a) M8 and b) M11; [USC II + CH3O2]: addition of CH3O2 chemistry from Aramco 2.0, [USC II-Altered R6 + CH3O2] change R6 
to Aramco 2.0 rate coefficient, [USC II-Altered R5 and R6 + CH3O2]: change R5 to the Aramco 2.0 rate coefficient.
.
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Hydrogen Datasets

Hydrogen datasets studied.
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CO2 Dilution (%)
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Hydrogen Datasets

Quantitative analysis of hydrogen datasets
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Aramco 2.0 DTU GRI 3.0 USC II
H1 11.43 25.12 63.45 50.70
H2 12.20 20.58 79.90 74.33
H3 89.13 116.67 112.95 70.82
Average 37.59 54.12 85.43 65.28
No. Best Fit 2 0 0 1
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Dataset Reference Average Pressure 
/atm

Equivalence 
Ratio (F)

CO2 Dilution (%)

H1 Shao et al. (2019) 109.6 1.00 85.00
H2 Shao et al. (2019) 270.6 1.00 85.00
H3 Shao et al. (2019) 38.4 0.25 85.00

J.K. Shao, R. Choudhary, D.E. Davidson, R.K. Hanson, S. Barak, S. Vasu, Ignition delay times of methane and hydrogen highly diluted in carbon dioxide at high pressures up to 300 atm, Proceedings of the Combustion Institute 37 (2019) 4555-4562.
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Changing the rate coefficient of R7 in USC II from
that of Aramco 2.0 reduces the ignition delay time
and better matches the experimental data.

J.K. Shao, R. Choudhary, D.E. Davidson, R.K. Hanson, S. Barak, S. Vasu, Ignition delay times of methane and
hydrogen highly diluted in carbon dioxide at high pressures up to 300 atm, Proceedings of the Combustion
Institute 37 (2019) 4555-4562.



Syngas Datasets

Page | 13

Syngas datasets studied.

Dataset Reference Average Pressure 
/atm

Equivalence 
Ratio (F)

CO2 Dilution (%)

S1 Barak et al. (2020) 78.9 1.02 91.80
S2 Barak et al. (2020) 91.7 0.41 64.50
S3 Barak et al. (2020) 89.6 0.41 92.20
S4 Barak et al. (2020) 89.7 1.09 63.90
S5 Barak et al. (2018) 41.5 1.00 85.00
S6 Barak et al. (2018) 38.6 1.00 85.00
S7 Barak et al. (2018) 38.5 1.00 85.00
S8 Barak et al. (2018) 38.4 1.00 85.00

S. Barak, O. Pryor, E. Ninnemann, S. Neupane, S. Vasu, X. Lu, B. Forrest, Ignition delay times of oxy-syngas and oxy-methane in supercritical CO2 mixtures for direct-fired cycles, Journal of Engineering for Gas Turbines and Power 142 (2020).
S. Barak, E. Ninnemann, S. Neupane, F. Barnes, J. Kapat, S. Vasu, High-pressure oxy-syngas ignition delay times with CO2 dilution: Shock tube measurements and comparison of the performance of kinetic mechanisms, Journal of Engineering for Gas
Turbines and Power 141 (2018).
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Quantitative analysis of syngas datasets
Aramco 2.0 DTU GRI 3.0 USC II

S1 53.20 70.06 21.84 49.96
S2 66.05 94.50 31.40 109.03
S3 117.50 181.42 32.33 123.44
S4 126.76 158.27 84.69 196.60
S5 240.64 303.37 170.24 242.84
S6 259.59 341.14 169.83 277.12
S7 191.64 277.53 241.41 132.09
S8 174.54 287.50 139.00 89.63
Average E 153.74 214.22 111.34 152.59
No. Best Fit 0 0 6 2
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Sensitivity analysis and identification of important syngas reactions.

R10 - CO + HO2 = CO2 + OH

-2 -1 0 1 2 3

H2 + O = H + OH

H2 + OH = H + H2O

O2 + H = O + OH

H2O2 (+M) = OH +OH (+M)

H2O2 + H = H2 + HO2

OH + HO2 = H2O + O2

H + O2 (+M) = HO2 (+M)

CO + HO2 = CO2 + OH

CO + O2 = CO2 + O

HO2 + H = H2 + O2

S3 - Aramco 2.0 vs. GRI 3.0

S3 dataset sensitivity analysis of GRI 3.0 and Aramco 2.0 at 1280 K.

D.L. Baulch, D.D. Drysdale, J. Duxbury, S. Grant, Evaluated kinetic data for high temperature reactions, Vol. 3: Homogeneous gas phase reactions of the O2-O3 systems, the CO-O2-H2 system, and of sulphur-containing species, Butterworths,1976
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The challenge is to culminate the information gained from the sensitivity analysis to
create one mechanism which can best model the conditions relevant to sCO2

combustion.

USC II was chosen as a starting mechanism which was updated with rate coefficients
which were identified as important through the sensitivity analysis.

In total 16 reactions were added to incorporate important chemistry of CH3O2 which
was identified as an important intermediate in high-pressure methane combustion.

9 reactions were altered to rate coefficients from Aramco 2.0 and GRI 3.0 to better
model individual datasets.
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Fuel Aramco 2.0 DTU GRI 3.0 USC II UoS sCO2

Hydrogen E (%) 37.6 54.1 85.4 65.3 17.5
No.
Best Fit

1 0 0 0 2

Methane E (%) 29.7 31.8 60.7 61.7 25.1
No.
Best Fit

2 0 2 4 3

Syngas E (%) 153.7 214.2 111.3 152.6 76.2
No.
Best Fit

0 0 3 0 5

Average E 73.7 100.0 85.8 93.2 39.6
Total No. Best Fit 3 0 5 4 10

𝑬 =
𝟏
𝑵%

𝒊"𝟏

𝑵 𝑿𝒔𝒊𝒎,𝒊 − 𝑿𝒆𝒙𝒑,𝒊
𝑿𝒆𝒙𝒑,𝒊

×𝟏𝟎𝟎
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Thank you for listening, any questions?
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