

DESIGN CONSIDERATIONS OF SCO2 TURBINES DEVELOPED WITHIN THE CARBOSOLA PROJECT

Dr. S. Glos The 4th European sCO₂ Conference for Energy Systems March 23-24, 2021, Prague, Czech Republic

Forschungsprojekt CARBOSOLA

Siemens Energy is a registered trademark licensed by Siemens AG.

Agenda

1. CARBOSOLA

- 2. sCO₂ cycles for waste heat recovery Basic considerations, cycle layouts
- 3. Scaling and optimization of CO₂ turbine
- 4. Outlook
- 5. Summary

Agenda

1. CARBOSOLA

- 2. sCO₂ cycles for waste heat recovery Basic considerations, cycle layouts
- 3. Scaling and optimization of CO₂ turbine
- 4. Outlook
- 5. Summary

Use case & boundary conditions Heat source: 2 x SGT-A65

Exhaust gas characteristics (Heat source):

Pressure: 1,04 bar
Temperature: 432 °C
Cold flue gas temp. ≥ 75 °C
Mass flow: 337 kg/s

Heat exchanger parameters:

- Pinch heater $\geq 10 \text{ K}$
- Pinch recuperator $\geq 10 \text{ K}$
- Pinch cooler (gaseous) ≥ 10 K
- Approach temp. cooler $\geq 5 \text{ K}$

Wet cooling tower parameters:

- Approach temperature \geq 3 °C
- Ambient temperature 15 °C (ISO)

Potential sCO₂ cycle architectures

Siemens Energy G LRE LSU R&D 6 Unrestricted © Siemens Energy, 2020

Exergy loss analysis Example: $P_{Turb. inlet/outlet}$ =300 bar/75 bar; $\Delta T_{Heater/Recu/Cooler}$ = 10K/10K/5 K

 \rightarrow Most complex cycle architecture leads to max net power output and efficiency but

What is the most economic cycle configuration?

 \rightarrow Answered by Dr. Thiago Gotelip & Prof. U. Gampe

And L. Heller & R. Buck for CSP-application

G LRE LSU R&D 7 Siemens Energy, 2020

Agenda

1. CARBOSOLA

- 2. sCO₂ cycles for waste heat recovery Basic considerations, cycle layouts
- 3. Scaling and optimization of CO₂ turbine
- 4. Outlook
- 5. Summary

Initial design approach: Scaling of high pressure barrel type turbine topology

Baseline: High efficient barrel type steam turbine

 $c_{Steam} = c_{SCO2}$

Thermal boundary condition	Value
Inlet pressure [bar]	240
Inlet temperature [°C]	350
Mass flow [kg/s]	427
Outlet pressure [bar]	64
Nominal shaft power [MW]	51
Inlet volume flow [m ³ /s]	2,1
Scaling results	
Speed [1/s]	96
Shaft diameter [mm]	385
Max. length of bladepath [mm]	1300

Scaling approach

Same flow velocities as reference turbine

 \rightarrow Approx. same stage efficiencies (~93 %), same centrifugal stresses

 \rightarrow Starting point for further optimization

sCO₂ turbine design study Result of scaling approach

Siemens Energy G LRE LSU R&D 10 Unrestricted © Siemens Energy, 2020

October 2020

sCO₂ turbine design study Inlet flow optimization

 \rightarrow Performance sensitive to pressure losses

Thermo-economic optimization will lead to larger flow diameters than known from conventional steam cycles

 \rightarrow 200 mm corresponding to 33 m/s was chosen within this project

Digression: Labyrinth seal flow physics Leakage and windage heating effects

Pressure difference drives mass flow m

$$\mathbf{m} = \underline{a} \cdot \underline{A} \sqrt{\frac{(p_1^2 - p_2^2) \cdot \rho_1}{p_1 \cdot \underline{n}}}$$

• Circumferential wall shear at rotating shaft is reason for fluid heat up Δh_t

$$\underbrace{\mathsf{M}}_{:} \omega = \mathbf{m} \cdot \Delta \mathbf{h}_{\mathsf{t}}$$
$$\tau_{u} \cdot \mathbf{r} \, \mathsf{d} \mathsf{A}$$

• Empirical model acc. to Hecker et al.:

 τ =Const. ·Re^{-0.2} x 0,5 ρ w²

Siemens Energy G LRE LSU R&D 12 Unrestricted © Siemens Energy, 2020

Digression: Labyrinth seal flow physics Comparison CO₂ vs Steam

Parameters	
Mean labyrinth diameter D [mm]	430
Length of labyrinth L [mm]	384
Rotor frequency f [1/min]	5790

Siemens Energy G LRE LSU R&D 13 Unrestricted © Siemens Energy, 2020

October 2020

sCO₂ **turbine design study** Thrust piston optimization

 \rightarrow Minimizing the leakage flow does not correspond to minimizing the exergy losses \rightarrow Balancing the thermo-economic optimization with design requirements

 \rightarrow Piston length of approx. 350 mm was chosen within the design study

sCO₂ turbine design study Shaft sealing concepts

SIEMENS GUGLGA

Brushes Labyrinth: m leak (total) = 1296 kg/d Exergy loss = 0,478 MW Turbine efficiency* = 88,78%

85bar CO₂ 0,97 bar 80 bar, s DGS

CO

DGS: m leak (total) = 518,4 kg/dExergy loss = 0,107 MW Turbine efficiency* = 89,54%

*Isentropic efficiency with Turbine outlet pressure of 80 bar

Siemens Energy G LRE LSU R&D 15 Unrestricted © Siemens Energy, 2020

 \rightarrow Dry Gas Seals reduce leakages/losses significantly

 \rightarrow Even with DGS recompression of leakages might be necessary

October 2020

sCO₂ **turbine design study** Optimization result overview

Agenda

1. CARBOSOLA

- 2. sCO₂ cycles for waste heat recovery Basic considerations, cycle layouts
- 3. Scaling and optimization of CO₂ turbine
- 4. Outlook
- 5. Summary

CARBOSOLA Outlook

 \rightarrow Component & system design of demo plant

 \rightarrow Detailed design of small scale demo turbine has been started

Siemens Energy G LRE LSU R&D 19 Unrestricted © Siemens Energy, 2020

Summary

- CARBOSOLA project has been initiated to drive the sCO₂ technology development in Germany
- Different aspects of the turbine design have been investigated leading to a first design concept
- Optimization of scaled design approach leading to high efficient barrel type turbine

Bundesministerium

für Wirtschaft und Energie

• Due to the specific fluid properties, specific phenomena such as fluid friction, pressure losses, asymmetrical flow conditions and leakages are of greater importance and need to be considered during design process

DESIGN CONSIDERATIONS OF SCO₂ TURBINES DEVELOPED WITHIN THE CARBOSOLA PROJECT

Thank you for your attention

Stefan Glos

Patrik Rene Lippe

Dominic Schlehuber

Simon Kobler

Michael Wechsung

Siemens Energy is a registered trademark licensed by Siemens AG.