Investigation of material degradation and coolant chemistry for sCO₂ power cycles

Jan Berka, Lucia Rozumová, J. V. Ballek Tomáš Hlinčík, Eliška Purkarová, Alice Vagenknechtová

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

Power cycle chemistry

- The chemical composition of the coolant/heat transport media influence the lifetime and performance of power units
- Even trace content of some specific components could essentially affect coolant properties – particularly at high pressures and temperatures
- Conventional power stations (with water-steam power cycles):
 - The coolant composition is monitored especially the specific components concentrations
 - The standards were established

Chemistry of CO₂ heat transfer medium

- Only limited data in technical and scientific literature, databases etc.
- Limited information of CO2 primary coolant composition in nuclear power plants (MAGNOX, AGR, A1 – Jaslovské Bohunice)

The impurities in the primary CO2 coolant and supply gas in the A1 nuclear power plant

Compound	Average value in primary CO ₂ coolant	Limit value for supply gas (mg.kg ⁻¹)	Average value in supply gas	
H ₂ O	700–1200	20	15	
Oil	1–5	5	1	
H ₂	-	2	< 2	
H_2S , NH_3 and others	-	1	< 1	

Chemistry of sCO₂ power cycles

- Limited information
- Max. sCO₂ temperature 500 950 °C the composition of medium may influence of corrosion intensity, etc.
- Higher content of impurities (in units of % by volume or higher) may influence the thermodynamic properties of medium and the power cycle efficiency
- The power consumption increase is caused by the decrease of medium density

sCO ₂ medium purity (% by volume)	Compressor power consumption (%)		
100	100		
95.6	106		
90.9	134		

Sources of impurities in sCO₂ medium

- Source gas supposed for power units: CO2 of purity 3.0, 4.0, 4.5 or 4.8
- CO₂ available on the market

	Purity	Impurities (vppm)					
CO ₂ type	% vol.	H_2O	O ₂	CO	C _n H _m	N_2	Oil
SFC/SFE	99.9993	1	2	0,5	1	3	-
CO ₂ for food industry	99.5	52	-	10	-	-	5
(E290)							
4.8	99.998	5	2	1	2	10	-
4.5	99.995	5	15	1	2	30	-
R-744	99.9	10	15	1	2	30	-
3.0	99.9	120	500	-	50	500	-
5.3	99.9993	1	2	0,5	1	3	-

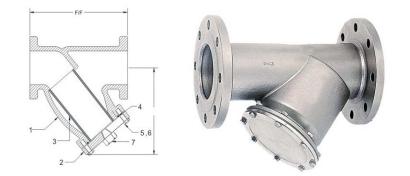
Sources of impurities in sCO₂ medium

- Leakage of air, moisture, lubricants
- Desorption from internal surfaces
- Products of chemical reactions in the circuit
- Expected admixtures in cycles with indirect heating: O₂, H₂O, H₂, CO, CH₄, N₂
- In cycles with direct combustion also the combustion products are expected: SO₂, SO₃, NO, NO₂

Example of sCO₂ composition in direct combustion cycle

Component/fuel	Natural gas (vol. %)	Synthesis gas (vol. %)
CO ₂	91.80	95.61
H ₂ O	6.36	2.68
O ₂	0.20	0.57
N ₂	1.11	0.66
Ar	0.53	0.47

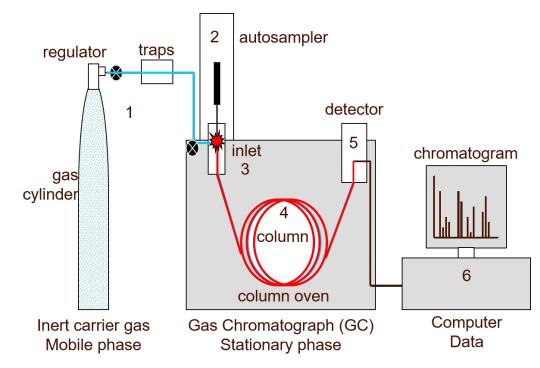
Expected effect of impurities


- Affection of corrosion and material properties (even in concentration bellow 1 % by volume): H₂O, O₂, SO_x, CO, H₂, CH₄
- Affection of heat transfer: Oil (in higher concentration higher than 1 % by weigh)
- Affection of power cycle efficiency: Impurities in higher concentrations. Especially in case of the cycle with direct combustion

sCO2 purification methods

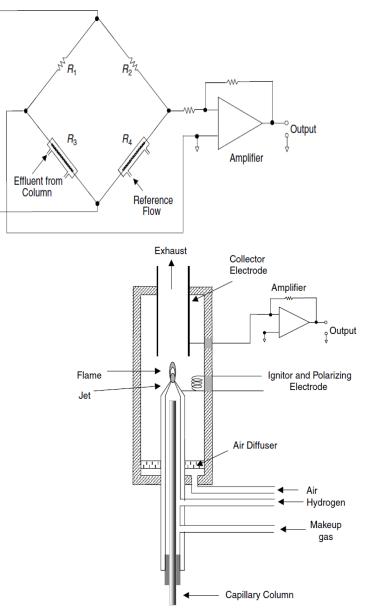
- Very poor information concerning existing units and devices
- In some devices oil separators used
 - SCARLETT loop oil separator localized behind the compressor. Efficiency higher than 99 %
- Particle separators to prevent turbine damage due to particles

The particle separator "Y-filter"

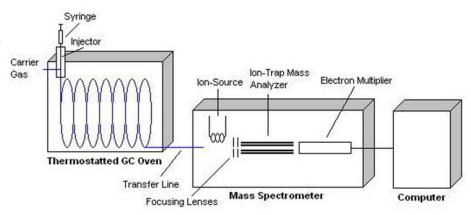

[http://www.pmtengineers.com/images/product/cast_steel_y_t ype_strainer.jpg]

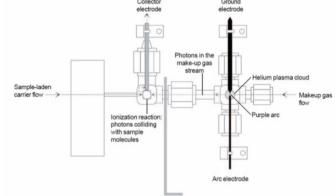
Proposed sCO₂ analytical purity control

- Analytical methods based on gas chromatography
- The sensitivity and applicability depends on:
 - The system configuration
 - Chromatographic column
 - Detector
 - Chromatographic method
 - Sampling method
- Other methods



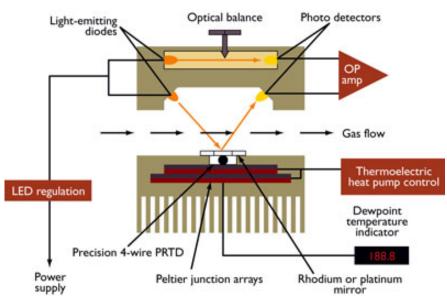
Selected gas chromatographic methods


- Gas chromatography with Thermal conductivity detector (GC-TCD)
 - Universal for wide spectrum compounds detection
 - Detection limit about 10 vppm
 - Not suitable for mixtures containing H₂ and carrier gas He
- Gas chromatography with Flame ionization detector (GC-FID)
 - Sensitive for flammable compounds, especially C_xH_y
 - For permanent gases not sensitive



Selected gas chromatographic methods

- Gas chromatography with Helium ionization detector (GC-HID)
 - Universal
 - Very sensitive (detection limit for some compounds bellow 0.1 vppm)
- Gas chromatography with Mass spectrometry (GC-MS)
 - Very sensitive
 - Convenient especially for detection of trace concentration of organics
 - Expensive (purchase, operation, maintenance)
 - Demanding on operating staff qualification



Analytical methods for H₂O monitoring

- Gas chromatography is not suitable for quantitative H₂O monitoring (especially in low concentration)
- Methods for H₂O monitoring
 - Karl Fischer titration: $SO_2 + I_2 + H_2O \rightarrow H_2SO_4 + 2HI$
 - Cooled mirror
 - Capacity hygrometers
 - Optical hygrometers
 - Absorption spectroscopy (TDLAS)
 - Other methods

Cooled mirror principle

Parameters of analytical methods for H₂O monitoring

Method	Maximal pressure (MPa)	Range of measurement – dew points (°C)	Uncertainty (°C)	Note
Cooled mirror	1,1 (2)	- 35 až + 25 (- 65 až + 25) ^a	± 0,2	^a Depends on the connected probe
Cooled mirror (mobile)	10	- 35 až + 25 (-50 až + 25) ^b	± 1	^b depends on ambient temperature
Optical	25	- 80 až + 20	± 1	
Capacity	34,5	- 80 až +10	±2 (±3)	Frequent calibration needed
QCM	0,4	- 80 až - 13	± 3 až ± 1	
TDLAS	0,17	- 71 až - 2,6*	± 4 až ± 0,1	

Project "Purification and purity control of CO₂ gas in power cycles"

- Supported by TA CR
- Involved organizations: Centrum vyzkumu Rez s.r.o. and University of chemistry and technology Prague
- Duration: 09/2019 06/2025
- Objectives
 - Extend and improve knowledge and experience of methods usable for sCO₂ medium purification and purity control
 - Verification selected methods in laboratory and sCO₂ loop operation
 - Propose the purification and purity control system for sCO₂ power cycle

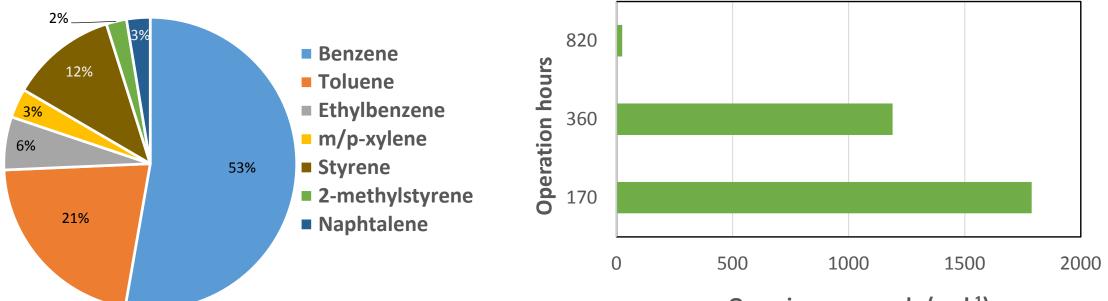
Activities within the project

- Summary of information concerning:
 - sCO₂ medium composition
 - Analytical methods available for sCO₂ purity control
 - Applicable purification methods especially based on adsorption processes – knowledge transfer from other technologies
- Experimental program aimed to verification of analytical methods and purification processes
- Experiments are planned to be performed within next period
 - Tests of moisture separation from CO₂ on selected materials are planned soon

Planned during 2021 - 2022

Organic impurities monitoring during sCO₂ loop operational campaign

- Source of organic impurities in circulating medium
 - Lubricants, degreasers and dissolvent from production
 - Penetration (e.g. from compressor, vacuum pumps, etc.)
 - Subsequent chemical reaction on the circuit during operation
- Loop operating parameters
 - 550 °C in the test section
 - 25 MPa in high-pressure section
 - Campaign duration: 1000 hours
 - Loop filled with high-purity CO_2 (4.8)
 - Dosing of 40 kg of "fresh" CO₂ per operation day

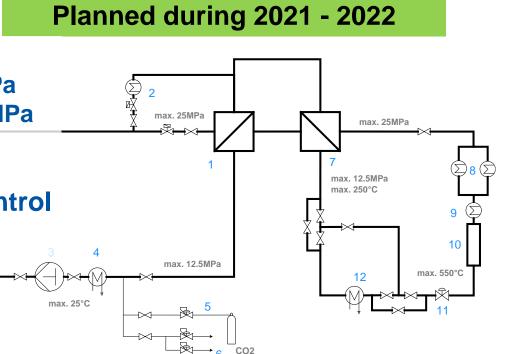

Organic impurities monitoring during sCO₂ loop operational campaign

- Sampling by using the sampling tubes with active carbon
- Determination of organic compounds by GC-MS after desorption by carbon disulfide
- The concentration of organics decreased during operation (from ca. 1800 to 5 ng/l at 25 °C and 1 bar)
- In the 1st sample after 170 operational hours various organic compounds was detected
- In the next samples only benzene was detected

Organic impurities monitoring during sCO₂ loop operational campaign

Organic compounds (ng.l⁻¹)

The sample after 170 operational hours



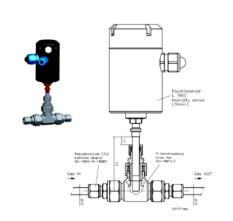
Analytical purity control system for sCO₂ loop

- GC-HID for H₂, CO, CH₄ and other simple compounds monitoring
- Optical hygrometer

Max. temperature: 550 °C Max. pressure in HP section: 25 MPa Max. pressure in LP section: 12.5 MPa Max. flow rate: 0.4 kg/s Total volume: 80 I No purification and purity control implemented yet

GC-HID prepared to assemble to sampling line

The sCO2 experimental loop. 1: low temperature heat exchanger, 2: preheater, 3: main circulation pump, 4: cooler, 5: CO2 dosing system, 6: sampling system, 7: high temperature heat exchanger, 8: parallel heaters, 9: heater, 10: test section, 11: reduction valve, 12: cooler


Optical hygrometer for on-line moisture monitoring

• Optical hygrometer Bartec Hygrophil[®]

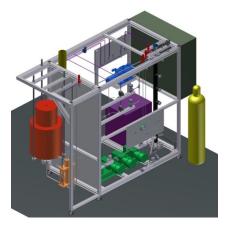
Planned during 2021 - 2022

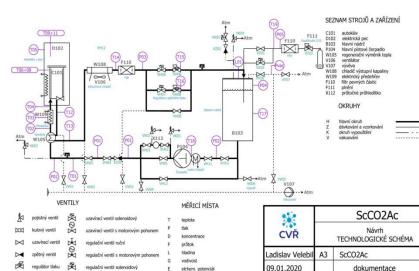
- Measurement based on of change of infrared light wavelength in dependence on moisture content
- Used in natural gas transportation
- In CV Rez used for H₂O monitoring in High Temperature Helium Loop very good experience
- Detection limit 1 vppm
- Max. temperature 70 °C and pressure 20 MPa in the probe site

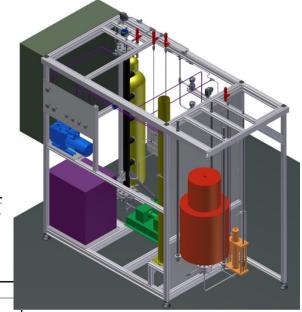
Adaptation of Bartec Hygrophil[®] for sCO₂

- Special calibration needed
- Recommendation for reaching the accurate values of moisture content :
 - Temperature of CO_2 in the probe site: $10 40 \degree C$
 - Pressure in the probe site: 1 50 bar (0.1 5 MPa)

- The probe should be in the separate section parallel to the main circuit heated to 40 °C
- The pressure in the probe section should be reduced to 50 bar


sCO₂ autoclave for material testing

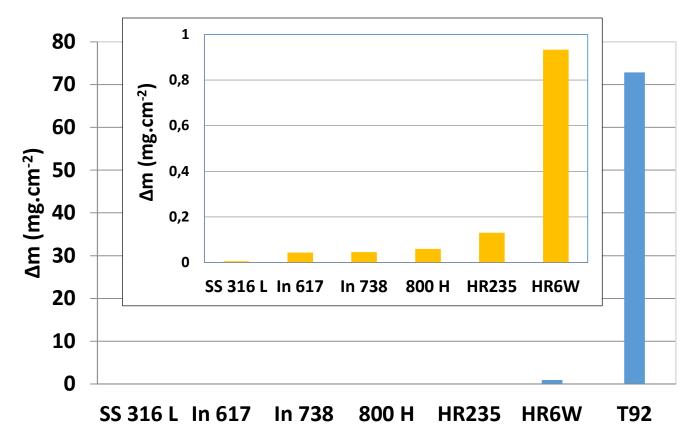

Planned during 2021 - 2022


r3.0

1/1

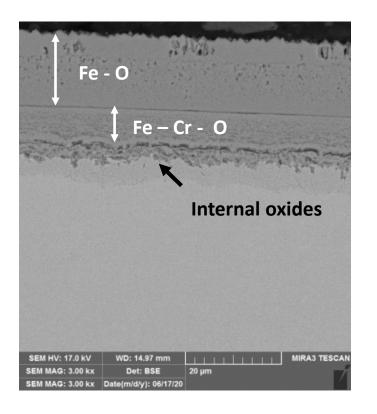
- Purpose: materials of purification units testing in sCO₂ environment
- Usable also for another purposes
- Parameters
 - Max. temperature: 700 °C
 - Max. pressure: 30 MPa

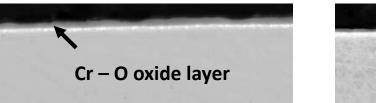
Test of material degradation

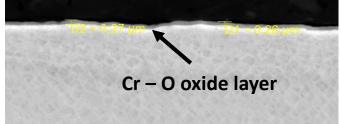

- Samples exposed during 1000 hours sCO₂ loop campaign
 - t = 550 °C
 - p = 25 MPa
- About 20 types of alloys assumed to be used in sCO₂ power cycles
- Examples:
 - Ferritic steel T92
 - Austenitic steel: 316L
 - Alloy 800 H
 - Nickel based alloys: HR6W, HR235, Inconel 738, Inconel 617

Selected results of material test

 The analyses of exposed samples (SEM-EDS, GD-OES, LOM...) are still in progress




Mass gains after exposure



SEM cross section of exposed samples

More info: L. Rozumová, T. Melichar, L. Velebil: **Microstructural Evaluation of Preselected Steels for Turbine after Supercritical CO2 Exposure** (We, March 24 2021, 9:30)

SEM HV: 17.0 kV	WD: 8.93 mm	TTTT LITT	LYRA3 TESCAN
SEM MAG: 10.0 kx	Det: BSE	5 µm	
	Date(m/d/y): 05/26/20	Perform	ance in nanospace

HR6W

SEM HV: 17.0 kV	WD: 9.07 mm	1111	TITE	LYRA3 TESCAN
SEM MAG: 10.0 kx	Det: BSE	5 µm		
View field: 20.8 µm	Date(m/d/y): 08/04/20		Performanc	e in nanospace

Inconel 738

Conclusion

- Research activities of Czech organizations are also focused on:
 - sCO₂ power cycle chemistry
 - Degradation of materials in sCO₂
- Objectives
 - Improve knowledge of sCO₂ purification and purity control
 - Purification and purity methods verification
 - Propose the purification and purity control system for sCO₂ power cycles
 - Gain experience on material degradation in sCO₂
- Activities started during last 2 years:
 - Impurities expected in sCO₂ medium
 - Available purification and purity control methods
 - 1000 h. material test in sCO₂ loop performed

Conclusion

- Activities planned in the next period
 - Verification of GC-HID and optical hygrometer for sCO2 purity control in experimental loop
 - Laboratory tests of selected impurities separation
 - Autoclave for material testing construction and operation

Contacts for questions

Thank you for your attention

This work was supported by Technology agency of Czech Republic (TA CR) in project No. TK02030023

> T A Č R

