

4TH EUROPEAN SCO₂ CONFERENCE FOR ENERGY SYSTEMS

MARCH 23-24, 2020

TITLE OF PAPER

ADVANCED THERMODYNAMIC POWER CYCLES UTILIZING CARBON DIOXIDE BASED MIXTURES AS WORKING FLUIDS FOR HIGH TEMPERATURE WASTE HEAT RECOVERY

Authors:

Abubakr Ayub*, Gioele Di Marcoberardino, Costante Mario Invernizzi, Paolo Iora Affiliations:

Department of Mechanical and Industrial Engineering, Universita Degli Studi Di Brescia, Brescia, Italy.

Abubakr Ayub

a.ayub@unibs.it; abubakrayub@gmail.com

PhD student (2019-now) Department of Mechanical and Industrial Engineering (DRIMI) Holder of PhD scholarship offered by Universita Degli Studi Di Brescia, Brescia, Italy.

PhD research topic. *Advanced carbon dioxide thermodynamic cycles for power production*

Professor:

Costante Mario Invernizzi

Full Professor, Department of Mechanical and Industrial Engineering Universita Degli Studi Di Brescia, Italy.

Academic background:

Masters in Mechanical Engineering from Capital University of Science and Technology, Islamabad, Pakistan (2016-2018).

MS Thesis: Supercritical carbon dioxide power cycles for waste heat recovery of gas turbine

Background and main challenges

High temperature waste heat sources:

- Fluid catalyst cracking in Refineries ($T \approx 700^{\circ}$ C)
- Cement industry ($T \approx 300^{\circ}\text{C} 500^{\circ}\text{C}$)
- Steel and glass manufacturing industries

Effective ways to exploit waste heat for power production:

- Steam Rankine cycles
- Organic Rankine cycles
- Supercritical/Transcritical carbon dioxide cycles

Organic Rankine cycles

Many engines are developed and currently

installed.

Main challenge is thermal stability of working fluid

at high temperatures.

Supercritical carbon dioxide power cycles

Suitable for high temperature waste heat

recovery.

Main challenges are:

- Higher maximum operating pressures.
- Complex plant layouts (including cascade heating and dual expansion processes).

- To achieve higher total efficiency *(heat recovery effectiveness x cycle efficiency)*
- Employing simpler power plant scheme
- To lower power cycle operating pressures.
- And, to reduce plant specific cost and levelized cost of electricity.

1. Choice of additives for CO₂ mixtures

2. Thermodynamic properties of CO₂ mixtures

3. Thermodynamic modeling of power cycles

4. Thermodynamic performance comparison

1. Choice of additives for CO₂ mixtures

- 2. Thermodynamic properties of CO₂ mixtures
- 3. Thermodynamic modeling of power cycles
- 4. Thermodynamic performance analysis and comparison

Selection criteria

- $T_{cr} > T_{cr} \text{ of } CO_2$
- Moderate P_{cr}
- Thermally stable up to 400°C
- Lower molecular complexity
- Low GWP and ODP
- Non-flammable, nontoxic

1. Choice of additives for CO₂ mixtures

Working fluid	T _{cr} (C)	P _{cr} (bars)	Molecular weight	Parameter of Molecular Complexity	Acentric factor ω	Thermal stability
CO ₂	31.06	73.83	44.01	-9.340	0.22362	>700 °C
R134a	101.03	40.56	102.03	-2.429	0.32687	350 to 370 °C
NOVEC5110	146	21.44	266.04	17.145	0.42919	
NOVEC649	168.66	18.69	316.04	28.165	0.471	200 20000
HFO1234yf	94.7	33.82	114.04	-1.017	0.28203	200-300°C
HFO1234ze(E)	109.36	36.62	114.04	0.046	0.32376	

1. Choice of additives for CO₂ mixtures

Working fluid	ODP	GWP in 100 years	Flammability	Health	Instability	ASHRAE 34 safety group
CO ₂	0	1	0	2	0	A1
R134a	0	1370	0	1	1	A1
NOVEC 5110	0	1	1	3	0	
NOVEC649	0	1	0	3	1	
HFO1234yf	0	< 4.4	4	2	0	A2L
HFO1234ze(E)	0	6	n.a.	n.a.	n.a.	A2L

1. Choice of additives for CO₂ mixtures

2. Thermodynamic properties of CO₂ mixtures

3. Thermodynamic modeling of power cycles

4. Thermodynamic performance analysis and comparison

- Identification of Equation of state (EoS)
- Calibrate EoS parameters using

experimental data.

- Use EoS to determine thermodynamic
 properties of CO₂ mixtures at different
 composition:
 - P-T phase diagrams
 - Critical points
 - Densities, enthalpies and entropies

2. Thermodynamic properties of CO₂ mixtures

Peng Robinson EoS with van der Waals mixing rules

EoS requires:

- Pure fluid properties.
- Binary interaction parameter (k_{ij})

2. Thermodynamic properties of CO₂ mixtures

Fitting Equation of state on experimental vapor-liquid equilibrium (VLE) data

Value of binary interaction parameter (k_{ij}) is determined by fitting EoS on experimental data.

CO₂-Novec649 mixture

- Experimental VLE (scatter points)
- Solid line shows VLE computed by EoS
- $k_{1,2} = 0.07358 \pm 0.011206$

• Information about bubble and dew points, critical locus and temperature glide *(temperature difference between bubble and dew point at constant pressure).*

2. Thermodynamic properties of CO₂ mixtures

- In case, No experimental VLE data are available
- The correlation between **a**_{1,2} and **a**₂ is developed using data of some known CO₂ mixtures.

$$a_{1,2} = \sqrt{a_1 a_2} \left(1 - k_{1,2} \right)$$

 $y = C_0 + C_1 X + C_2 X^2$

 $\textbf{y} \equiv a_{12}*10^{24}$, Interaction parameter of a $\rm CO_2\,mixture$

$$X \equiv a_2 * 10^{48} \ \frac{Jm^3}{molecule^2},$$

van der Waals coefficient of intermolecular forces for the additive (or dopant).

2. Thermodynamic properties of CO₂ mixtures

P-T envelop and critical points

*CO*₂-*NOVEC* 5110 mixture

 $a_{1,2} = \sqrt{a_1 a_2} \left(1 - k_{1,2}\right)$ $k_{1,2} = 0.06996 \pm 0.062841$ computed using uncertainty propagation

2. Thermodynamic properties of CO₂ mixtures

Values of $k_{1,2}$ for CO₂ mixtures computed by either:

- Fitting EoS on experimental VLE data.
- Estimated using correlation in case of No experimental data*

CO ₂ mixtures	Experimental VLE data	<i>k</i> _{1,2}	Standard deviation
CO ₂ -Novec649	VLE at T= 40 °C, 50°C, 60°C and 70°C	0.07358	0.01120
CO ₂ -R134a	VLE at T= -21 °C T= -1 °C, 19°C, 50°C, 55°C 56°C, 60°C,65°C, 66°C ,70°C and 81°C	0.0166	0.00824
CO ₂ -Novec5110	Not available	0.06996*	

- 1. Choice of additives for CO₂ mixtures
- 2. Thermodynamic properties of CO₂ mixtures

3. Thermodynamic modeling of power cycles

4. Thermodynamic performance analysis and comparison

Thermodynamic power cycles with

supercritical CO₂ working fluid.

Thermodynamic power cycles with CO₂ mixtures working fluid

1. Simple Recuperative cycle

2. Recuperative cycle with split

• Working fluid: CO₂

• Power cycle layouts:

Three different cycle configurations are selected from best practice in literature

Table 4: Operating parameters and common assumptions forthermodynamic simulation of power cycles.

Parameter	Value
Pmin or P1(bars)	100
Pressure ratio (P _R)	1.5 to 6
T _{min} (°C)	35
T _{exh} , in (°C)	450
m _{exh} (kg/s)	100
Flue gases (percentage	28% CO ₂ , 58% N ₂ ,
molar composition)[21]	3% O ₂ , 11% H ₂ O
<i>МІТА_{РНЕ} (</i> °С)	50
MITAradiator, MITArecup (°C)	20
$\eta_{isent,comp}/\eta_{mech,comp}$	0.8 / 0.98
$\eta_{isent,turb}$ / $\eta_{mech,turb}$	0.85/0.95

3. Single flow split dual expansion cycle

Flue-in

1

Flue-in

3. Single flow split dual expansion cycle

- Dual expansion processes.
- Different mass flow through recuperators (LTR and HTR) to balance heat capacities and improve thermal match.

Thermodynamic performance comparison of three CO₂ power cycles

_

- SRC is not proven to be effective in heat extraction from flue gases.
- There is **10.56%** and **16.29%** gain in total efficiency for RCS and SFDE cycles, respectively relative to SRC.

CO ₂ Power cycles	T _{max} (°C)	P _R	Ŵ _{net} (kW)	η_{th}	φ	$\eta_{total} = \eta_{th} \ge \phi$	Exergy efficiency
SRC	400	4	5873	0.249	0.532	0.132	0.313
RCS	350	3	6487	0.219	0.669	0.146	0.345
SFDE	400	2.9	6826	0.186	0.827	0.154	0.363

Thermodynamic power cycles with CO₂ mixtures working fluid

- Working fluid: CO₂-Novec5110
- Heat source: Flue gases at T = 450°C and \dot{m}_{flue} = 100 kg/s

Simple Recuperative transcritical cycle

Thermodynamic power cycles with CO₂ mixtures working fluid

- Working fluid: CO₂-Novec5110
- Heat source: Flue gases at T = 450°C and \dot{m}_{flue} = 100 kg/s

Simple Recuperative transcritical cycle

Thermodynamic power cycles with CO₂ mixtures working fluid

• Working fluid: CO₂-Novec649

• Heat source:

Flue gases at T = 450°C and \dot{m}_{flue} = 100 kg/s

Conclusion

• CO_2 -Novec mixtures show comparable η_{th} compared to sCO₂ simple recuperative cycle

- 3 percentage points higher η_{th} compared to recuperative with mass split cycle.
- Lower expansion in turbine compared to CO₂ power cycles owing to higher molecular complexity of Novec fluids.

Comparison of promising thermodynamic cycle results for supercritical CO₂ and transcritical CO₂ mixtures power cycles.

Working fluid	η_{total}	η_{th}	₩ _{net} (kW)	P _{max} (bars)	P _{min} (bars)
sCO₂ (Simple recuperative cycle)	0.132	0.249	5873	400	100
sCO₂ (Recuperative cycle with mass split)	0.146	0.219	6464	300	100
CO ₂ (0.8)-Novec649 (0.2)	0.108	0.248	4782	273	54.58
CO ₂ (0.8)-Novec5110 (0.2)	0.117	0.252	5180	246	54.67
CO ₂ (0.7)-R134a (0.3)	0.147	0.248	6509	200	24.54

Conclusion

With **CO₂-R134a mixture** working fluid:

- Comparable total efficiency is achieved.
- 3 percentage points rise in η_{th} is obtained compared to recuperative with mass split sCO₂ cycle.

Lower maximum operating pressures for power cycles operating with CO₂ mixtures. *Beneficial in component design point of view since lower pressures are proportional to lower mechanical stresses in cycle components.* Comparison of promising thermodynamic cycle results for supercritical CO₂ and transcritical CO₂ mixtures power cycles.

Working fluid	η_{total}	η_{th}	${\dot W}_{\sf net}$ (kW)	P _{max} (bars)	P _{min} (bars)
sCO₂ (Simple recuperative cycle)	0.132	0.249	5873	400	100
sCO ₂ (Recuperative cycle with mass split)	0.146	0.219	6464	300	100
CO ₂ (0.8)-Novec649 (0.2)	0.108	0.248	4782	273	54.58
CO ₂ (0.8)-Novec5110 (0.2)	0.117	0.252	5180	246	54.67
CO ₂ (0.7)-R134a (0.3)	0.147	0.248	6509	200	24.54

THANK YOU FOR YOUR ATTENTION.