Center for Advanced Turbomachinery and Energy Research Laboratory for Turbine Aerodynamics Heat Transfer and Durability

EXERGOECONOMIC ANALYSIS OF A HYBRID SCO2 BRAYTON POWER CYCLE

Abdurrahman Alenezi, Ladislav Vesely, Jayanta Kapat

DEPARTMENT OF MECHANICAL & AEROSPACE ENGINEERING UNIVERSITY OF CENTRAL FLORIDA

The 4th European sCO₂ Conference for Energy Systems 22-26 March 2021

Copyright © by Abdurrahman Alenezi et al/CATER

PRESENTATION OUTLINE

- Part 1: Introduction
- Part 2: System Description
 - A- CSP Cycle
 - B- Oxy-combustion Cycle
- Part 3: System Modeling & Results
 - A- Thermodynamic Analysis
 - B- Exergoeconomic Analysis
 - C- Parametric Study
- Part 4: Conclusion & Future Work

INTRODUCTION

Energy & Environmental Outlook (What is going on?)

INTRODUCTION Objective & Motivation

DEMAND	 Satisfy the increasing energy demand
ENVIRONMENT	 Fulfill environmental duty of care
ECONOMY	 Be economically viable
UNDERSTAND	 Leads to better cycle design & controls

INTRODUCTION

Solar Power Cycles: Concentrated Solar Power (CSP) Systems

Schematic of CSP molten salt-based plant [18]

INTRODUCTION

Oxy-combustion Cycles (Allam Cycle)

Oxy-combustion cycles?

- They are cycles that utilize $\boldsymbol{0_2}$ instead of air for combustion
- Combustion reaction: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
- Literature on Allam cycle claims η_{cycle} = 59 % [26]

Advantages:

- OC is a clean energy tech. (carbon capture tech.)
- Main products: $CO_2 \& H_2O$
- Resultant CO₂ is pure & at high pressure (ready for storage/export)
- Eliminates:
 - Air pollution resulting from the use of air $(NO_x \& SO_x)$
 - Treatment processes (chem./phys.) for the combustion gases [24]

Disadvantages:

• ASU (cryogenic air separation) is energy intensive & have a parasitic effect on η cycle [14]

Solution: implement new air separation technology

• Combusting fuel in pure O2 \rightarrow high temp. \rightarrow negative on equipment structural integrity (safety) Solution: The CO₂ recycle stream 95% (O₂+ CH₄ = 5%) \rightarrow dilutes O₂ & controls $T_{combustion}$

PRESENTATION OUTLINE

• Part 1: Introduction

- Part 2: System Description
 - A- CSP Cycle
 - B- Oxy-combustion Cycle
- Part 3: System Modeling & Results
 - A- Thermodynamic Analysis
 - B- Exergoeconomic Analysis
 - C- Parametric Study
- Part 4: Conclusion & Future Work

System Description Proposed Hybrid Cycle

ltem	CSP Configuration	OC Configuration
Cycle type	sCO ₂ Brayton cycle	sCO ₂ Brayton cycle
System type	Closed cycle	Semi- closed cycle
Working fluid	CO ₂	$CO_2 + H_2O$
Cycle configuration	Simple recuperated	Simple recuperated
Heat source	Direct	Indirect
Heat input unit	CSP main HX	Combustor + ASU

Hybrid Cycle Unit	Unique/Common
Turbine	Common
Compressors I & II	Common
CO ₂ export pumps	Common
Cooler I, Cooler II	Common
Recuperator	Common
CSP main heat exchanger	Unique to CSP configuration
Combustor	Unique to OC configuration
ASU	Unique to OC configuration
Water separator	Unique to OC configuration

System Description A- CSP Standalone Configuration

- The CSP cycle is an RC configuration cycle also.
- The choice of the RC configuration is based on having the same equipment utilized for the NG Allam and CSP cycles.
- The CSP cycle is closed with no mass crossing its boundaries.
- The cycle consists of the main heat exchanger, a recuperator, coolers/heat exchangers, the compressor, the turbine and pumps.
- The heat into the cycle is gained at the main heat exchanger where the HTF with high thermal energy is heating up CO₂ stream before it is expanded in the turbine to produce work.
- Next, CO₂ is cooled down in a the recuperator while reheating the highpressure CO₂ stream flowing back to the main heat exchanger.
- Then, CO₂ gas undergo intercooling compression (gas then liquid compression) in the same manner as in the NG Allam cycle where it goes into compression with intercooling as a gas then cooling at Cooler 2 to become liquid and finally boosted at the pump to a higher pressure.
- Finally, the high-pressure CO₂ stream flows back to the recuperator where it heats up before entering the main heat exchanger again.

Process schematic of the standalone CSP Configuration

System Description B- OC Standalone Configuration

- The hot CO₂ recycle stream coming from the recuperator, the fuel (CH₄) and pure O₂ stream from the ASU are burned at high-pressure at the combustor. CO₂ makes up to 95% of the mass flow rate in the combustor and the remaining 5% constitutes oxygen and fuel [16].
- To produce work, the combustion flue gases, mainly CO_2 and water (H₂O) are then expanded in the turbine where 90% of the flue gas entering the turbine is CO_2 [16].
- Flue gases are then cooled down in the recuperator while reheating the high-pressure CO₂ stream flowing back to the combustor.
- Then, the stream is cooled in cooler 1 and the water portion of the stream is separated and pumped out of the cycle before the remaining CO₂ gas undergoes intercooling compression (gas then liquid compression) in the compressor, cooler 2 and the pump.
- Gas compression is carried out in a two-stage compressor with intercooling while the pump is preceded with Cooler 2 to bring down the stream temperature.
- At this stage and after becoming a liquid, a portion of this highpressure pure CO₂ is sent to export/storage whereas the rest of the stream flows back to the recuperator and then the combustor [15].

Process schematic of the standalone OC Configuration

PRESENTATION OUTLINE

- Part 1: Introduction
- Part 2: System Description
 - A- CSP Cycle
 - B- Oxy-combustion Cycle
- Part 3: System Modeling & Results
 - A- Thermodynamic Analysis
 - B- Exergoeconomic Analysis
 - C- Parametric Study
- Part 4: Conclusion & Future Work

System Modeling & Results Exergoeconomic Analysis Procedure

ENERGY & EXERGY ANALYSIS	 Assign all thermodynamic states Assign exergy (Fuel + product + exergy destruction)
EXERGOECONOMIC ANALYSIS	 Assign Cost (Exergy + CAPEX + OPEX)
PERFORMANCE ECONOMIC ANALYSIS	 Assign base case cycle performance
PARAMETRIC STUDY	 Assign optimum values for single optimized variable

System Modeling & Results Exergoeconomic Analysis Procedure

Exergoeconomic Analysis: Assumptions & Input Parameters

The main system model assumptions

-	All processes	are under	steady-state	conditions.
---	---------------	-----------	--------------	-------------

- System heat losses to the environment are negligible.
- Potential and kinetic energy changes are negligible.
- The combustion process is complete.
- Combustion process flue gases are only H₂O and CO₂.
- Environmental ambient conditions are 25 °C and 1 atm.
- Turbine, compressors, and pumps assigned mean value isentropic efficiencies.
- Pressure drop is negligible for all equipment except for heat exchangers.
- The pressure drop for heat exchangers is 2%.
- A pinch point is assigned for all heat exchangers.
- Cooling water to coolers and intercooler is supplied at the dead state.

Model main input parameters

Parameter	Value
Dead state temperature (°C)	25
Dead state pressure (bar)	1
Turbine isentropic efficiency (%)	90
Turbine inlet temperature (°C)	700
Turbine inlet pressure (bar)	300
Turbine pressure ratio ()	10
Turbine inlet mass flowrate (kg/s)	125
Minimum compressor inlet temperature (°C)	20
Compressor inlet pressure (bar)	28.8
Compressor pressure ratio ()	2.78
Compressor isentropic efficiency (%)	85
Pump isentropic efficiency (%)	80
Fractional pressure drop (%)	2
Cooler pinch point temperature (°C)	5

System Modeling & Results Part A: Thermodynamic Analysis (Results)

P, T & h of the main process points for CSP configuration

Process	CS	P Standalone Confi	guration
Point	P (bar)	T (K)	h (kJ/kg CO ₂)
А	300	973.15	1223.5
В	30	692.27	897.57
С	29.4	359.06	541.58
D	28.81	293.15	470.87
Е	80	334.45	462.15
F	78.4	293.00	247.51
G	306.12	318.98	282.10
I	300	519.55	637.47

CSP configuration standalone log P-h diagram

Model validation:

The model $\eta_{cycle} = 61.64\%$ which is close to the number ($\eta_{cycle} = 59\%$) reported by Allam et al [26]

System Modeling & Results Part A: Thermodynamic Analysis (Results)

Process	<u>00</u>	<u> Standalone Confi</u>	one Configuration	
Point	P (bar)	T (K)	h (kJ/kg CO ₂)	
Α	300	973.15	1223.5	
В	30	692.27	897.57	
C	29.4	353.75	536.11	
D	28.81	293.15	470.87	
E	80	335.23	463.62	
F	78.4	293.15	247.51	
G	306.12	319.24	282.62	
I	300	642.64	799.6	

P T & h of the main process points for OC configuration

OC standalone configuration log P-h diagram

Mass flow rates at the hybrid's main process points

Process	Mass flowrate (kg/s)				
Point	CSP Configuration	OC Configuration			
1, 2, 3	125	125			
4, 5, 6, 7, 8	125	122.1			
9, 10	125	116			

OC configuration schematic

System Modeling & Results Part B: Exergoeconomic Analysis (Results)

- Applying energy, exergy and economic equations result in a system of linear equations.
- The mathematical system is coded.
- **Software:** Engineering Equation Solver (EES)

Model main	output	parameters	(The	base	case)
------------	--------	------------	------	------	-------

Parameter	CSP Configuration	OC Configuration
Net power (MW)	29.52	30.73
First law efficiency (%)	40.55	47.38
Second law efficiency (%)	56.92	54.72
Total unit cost of the product (\$/GJ)	27.55	12.98
Unit cost of electricity (Cent/kWh)	9.8	6.1

Part B: Exergoeconomic Analysis (Results)

Mass, exergy, and cost flowrates of the hybrid cycle CSP standalone configuration

Mass, exergy, and cost flowrates of the hybrid cycle OC standalone configuration

Part B: Exergoeconomic Analysis (Results)

Cycle	ϵ_k	Ċ _{D.k}	Ż	$\dot{C}_{D,k} + \dot{Z}_k$	r_k	f_k	-
Unit	(%)	(\$/h)	(\$/ h)	(\$/h)	(%)	(%)	_
CSP heat exchanger	90.46	669.9	0.3083	670.2	10.55	0.046	
Turbine	95.33	164.6	71.61	236.21	7.029	30.32	
Recuperator	62.05	589.7	0.3977	590.1	8.078	0.067	
Cooler I	96.11	75.93	0.941	76.87	1.61	1.224	•
Compressor I	87.56	24.47	5.818	30.29	18.12	19.21	
Intercooler	96.56	76.01	1.081	77.1	1.465	1.402	
Compressor II	90.71	20.79	4.569	25.36	11.72	18.02	
Cooler II	94.26	138.9	1.181	140.1	1.971	0.844	
Pump	76.63	85.92	2.198	88.11	3.427	2.949	
							-
Cycle	ϵ_k	Ċ _{D,k}	Ż _k	$\dot{C}_{D,k} + \dot{Z}_k$	r_k	f_k	-
Cycle Unit	ε _k (%)	Ċ _{D,k} (\$/h)	Ż _k (\$/h)	$\frac{\dot{C}_{D,k}+\dot{Z}_k}{(\$/h)}$	r _k (%)	f _k (%)	_
Cycle Unit Combustor	ε _k (%) 76.48	Ċ _{D,k} (\$/h) 1076	Ż _k (\$/h) 3.947	$\dot{C}_{D,k} + \dot{Z}_k$ (\$/h) 1079.95	r _k (%) 30.87	f _k (%) 0.3655	_
Cycle Unit Combustor Turbine	ε _k (%) 76.48 97.38	Ċ _{D,k} (\$/h) 1076 119.9	Ż _k (\$/h) 3.947 69.99	$\dot{C}_{D,k} + \dot{Z}_k$ (\$/h) 1079.95 189.9	r _k (%) 30.87 8.791	<i>f</i> _k (%) 0.3655 36.86	_
Cycle Unit Combustor Turbine Recuperator	ε _k (%) 76.48 97.38 95.21	Ċ _{D,k} (\$/h) 1076 119.9 222.7	Ż _k (\$/h) 3.947 69.99 0.5323	$\dot{C}_{D,k} + \dot{Z}_k$ (\$/h) 1079.95 189.9 223.2	r _k (%) 30.87 8.791 14.39	<i>f_k</i> (%) 0.3655 36.86 0.2384	_
Cycle Unit Combustor Turbine Recuperator Cooler I	ε _k (%) 76.48 97.38 95.21 96.4	Ċ _{D,k} (\$/h) 1076 119.9 222.7 43.2	Ż _k (\$/h) 3.947 69.99 0.5323 0.9684	$\dot{C}_{D,k} + \dot{Z}_k$ (\$/h) 1079.95 189.9 223.2 44.17	r _k (%) 30.87 8.791 14.39 1.473	<i>f_k</i> (%) 0.3655 36.86 0.2384 2.192	_
Cycle Unit Combustor Turbine Recuperator Cooler I Compressor I	ε _k (%) 76.48 97.38 95.21 96.4 89.53	Ċ _{D,k} (\$/h) 1076 119.9 222.7 43.2 19.31	Ż _k (\$/h) 3.947 69.99 0.5323 0.9684 4.535	Ċ _{D,k} + Ż _k (\$/h) 1079.95 189.9 223.2 44.17 23.85	r _k (%) 30.87 8.791 14.39 1.473 20.35	<i>f_k</i> (%) 0.3655 36.86 0.2384 2.192 19.01	_
Cycle Unit Combustor Turbine Recuperator Cooler I Compressor I Intercooler	ε _k (%) 76.48 97.38 95.21 96.4 89.53 96.57	Ċ _{D,k} (\$/h) 1076 119.9 222.7 43.2 19.31 45.9	Ż _k (\$/h) 3.947 69.99 0.5323 0.9684 4.535 1.066	$\dot{C}_{D,k} + \dot{Z}_k$ (\$/h) 1079.95 189.9 223.2 44.17 23.85 46.9	r _k (%) 30.87 8.791 14.39 1.473 20.35 1.475	<i>f_k</i> (%) 0.3655 36.86 0.2384 2.192 19.01 2.271	=
Cycle Unit Combustor Turbine Recuperator Cooler I Compressor I Intercooler Compressor II	ε _k (%) 76.48 97.38 95.21 96.4 89.53 96.57 91.82	Ċ _{D,k} (\$/h) 1076 119.9 222.7 43.2 19.31 45.9 17.25	Ż _k (\$/h) 3.947 69.99 0.5323 0.9684 4.535 1.066 4.025	$\dot{C}_{D,k} + \dot{Z}_k$ (\$/h) 1079.95 189.9 223.2 44.17 23.85 46.9 21.28	r _k (%) 30.87 8.791 14.39 1.473 20.35 1.475 14.58	<i>f_k</i> (%) 0.3655 36.86 0.2384 2.192 19.01 2.271 18.91	-
Cycle Unit Combustor Turbine Recuperator Cooler I Compressor I Intercooler Compressor II Cooler II	 ε_k (%) 76.48 97.38 95.21 96.4 89.53 96.57 91.82 94.19 	Ċ _{D,k} (\$/h) 1076 119.9 222.7 43.2 19.31 45.9 17.25 85.47	Ż _k (\$/h) 3.947 69.99 0.5323 0.9684 4.535 1.066 4.025 1.164	$\dot{C}_{D,k} + \dot{Z}_k$ (\$/h) 1079.95 189.9 223.2 44.17 23.85 46.9 21.28 86.63	r _k (%) 30.87 8.791 14.39 1.473 20.35 1.475 14.58 2.032	<i>f_k</i> (%) 0.3655 36.86 0.2384 2.192 19.01 2.271 18.91 1.344	-
Cycle Unit Combustor Turbine Recuperator Cooler I Compressor I Intercooler Compressor II Cooler II Pump	 ε_k (%) 76.48 97.38 95.21 96.4 89.53 96.57 91.82 94.19 77.3 	Ċ _{D,k} (\$/h) 1076 119.9 222.7 43.2 19.31 45.9 17.25 85.47 50.8	Ż _k (\$/h) 3.947 69.99 0.5323 0.9684 4.535 1.066 4.025 1.164 2.17	$\dot{C}_{D,k} + \dot{Z}_k$ (\$/h) 1079.95 189.9 223.2 44.17 23.85 46.9 21.28 86.63 52.9	r _k (%) 30.87 8.791 14.39 1.473 20.35 1.475 14.58 2.032 3.373	<i>f_k</i> (%) 0.3655 36.86 0.2384 2.192 19.01 2.271 18.91 1.344 4.097	_

Part C: Parametric study

Decision variable:

- Utilized to evaluate the cycle's performance.
- Utilized for parametric & multi-objective optimization.
- Utilized to compute the dependent variables.
- Decision variables must be independent of each other.
- Carefully selected to arrive at meaningful conclusions

Decision variable for the parametric study

Decision Variables	Symbol	Domain	Unit
Turbine inlet pressure	P_1	$250 \le P_1 \le 350$	bar
Turbine outlet pressure	P_2	$5 \le P_2 \le 40$	bar
Turbine inlet temperature	T_1	$700 \leq T_1 \leq 1200$	Κ

Dependent variables (performance indicators):

- Utilized to assess the studied systems.
- Dependent variables selected for this study are:
 - a. Exergy efficiency (η_{ex}).
 - b. Levelized cost of electricity (LCOE).

Part C: Parametric study (Results)

Conclusion: Increasing $T_{turb,in}$ is conducive to improving the thermodynamic and exergoeconomic performances of both configurations.

Variations of exergy efficiency and LCOE with turbine inlet temperature (T_1)

Part C: Parametric study (Results)

Conclusion: Increasing $P_{turb,in}$ is conducive to improving the thermodynamic and exergoeconomic performances of both configurations.

Variations of exergy efficiency and LCOE with turbine inlet pressure (P_1)

Part C: Parametric study (Results)

Conclusion:

- **CSP**: The decrease in P_{turb,out} decreases the turbine's produced power & compressor power consumption.
- **OC**: The decrease in P_{turb,out} results in a decrease in CAPEX and OPEX, which results in a decrease in LCOE as shown.

Variations of exergy efficiency and LCOE with turbine exit pressure (P_2)

PRESENTATION OUTLINE

- Part 1: Introduction
- Part 2: System Description
 - A- CSP Cycle
 - B- Oxy-combustion Cycle
- Part 3: System Modeling & Results
 - A- Thermodynamic Analysis
 - B- Exergoeconomic Analysis
 - C- Parametric Study
- Part 4: Conclusion & Future Work

Conclusion Exergoeconomic Analysis

In general:

- Both configurations obtained similar power output (30 MW) and second law efficiency (55%) .
- OC configuration's thermal efficiency was higher (7%).
- The total product cost in (\$/GJ) for the OC was half of that of the CSP.
- The unit cost of electricity in (Cent/kWh) for the CSP standalone configuration is 60% higher than OC configuration.

CSP Configuration:

- The main heat exchanger and recuperator are the most critical units to consider for savings.
- Reducing exergy destruction in main heat exchanger and recuperator is cost-effective for the entire cycle (even if it increases the component investment costs).
- Recommendation: Recuperator with higher efficiency will enhance exergoeconomic performance.

OC Configuration:

- The combustor and ASU are the most critical units for savings considerations.
- Replacement of ASU with a lower capital cost is recommended for overall exergoeconomic performance enhancement.

Conclusion Exergoeconomic Analysis

Parametric Study:

T_{turb,in}:

• Increasing *T_{turb,in}* improves the thermodynamic and exergoeconomic performances for both configurations.

P_{turb,in}:

• Similar trends for *P*_{turb,in} for both configurations.

P_{turb,out}:

- The decrease in *P_{turb,out}* decreases both turbine's produced power & compressor power consumption.
- CSP: The decrease in *P_{turb,out}* results in a decrease in CAPEX and OPEX, which results in a decrease in LCOE.

Future Work

Conduct the following studies:

- An optimization study on the hybrid cycle.
- A dynamic simulation of the recuperator of the OC configuration.
- A dynamic simulation of the whole cycle.

THANK YOU

Questions?

