

AN ATTEMPT FOR ESTABLISHING PRESSURE RATIO PERFORMANCE MAPS FOR SUPERCRITICAL CARBON DIOXIDE COMPRESSORS IN POWER APPLICATIONS

Ihab Abd El Hussein, M.Sc. - 24-03-2021

sCO_{2}-flex motivation

- Steady increase in renewables share
- Solar and wind energy represent ~ 50 \% of the renewable sources share
\Rightarrow High intermittency in the power generation

Goal:

Design a 25 MWe closed joule cycle with sCO_{2} as working medium

- Reach low off-design loads
- High load ramp-rate
- High efficiency at the off-design condition
- Bring the technology to a technical readiness level TRL 6
- Recompression cycle
- High Temperature recuperator bypass
- Inlet condition 80 bar 306 K

Main compressor with inlet condition near the critical point

sCO_{2} properties

- High variation of CO_{2} thermodynamic property
- An increase of only one Kelvin from the nominal condition leads to more than 10 percent change in density

=>

Required: compressor performance map valid for any inlet condition

Dimensionless performance map

Buckingham П-theorem

Compressor performance η, π, ψ_{h} function of four parameters

$$
\begin{aligned}
& \dot{m}_{r e d}=\frac{\dot{m}}{\rho_{0 t} \cdot a_{0 t} \cdot D_{2}^{2}} \\
& N_{r e d}=\frac{N \cdot D_{2}}{a_{0 t}}
\end{aligned}
$$

$$
R e=\frac{\rho_{0 t} \cdot N \cdot D_{2} \cdot b_{2}}{\mu_{0 t}}
$$

$$
k_{v}=-\frac{v}{p} \cdot \frac{c_{p}}{c_{v}} \cdot\left(\frac{\partial p}{\partial v}\right)_{T}
$$

- The isentropic exponent of sCO_{2} can vary substantially
- The isentropic exponent can vary from around 3 to around 8
- Typical isentropic exponent value for fluid obeying the ideal gas law ranges between 1 to 2

Assumption :

- Isentropic compression of a radially bladed compressor
- Constant k_{v} along the compression path
=>

$$
\pi=\left[M_{u 2}^{2} \cdot\left(k_{v}-1\right)+1\right]^{\frac{k_{v}}{k_{v}-1}}
$$

Pressure ratio varies substantially with the isentropic exponent

- Reducing the rotational speed with the critical velocity

$$
N_{r e d}=\frac{N \cdot D_{2}}{v_{c r}} \propto \frac{\Delta h}{v_{c r}^{2}}=C
$$

=>

Reduction of pressure ratio

 dependence on the isentropic exponent $k_{v}$$$
\pi=\left[2 \cdot C \cdot \frac{k_{v}-1}{k_{v}+1}+1\right]^{\frac{k_{v}}{k_{v}-1}}
$$

local sound speed for $\mathrm{Ma}=1$

$$
v_{c r}=\sqrt{\frac{2 \cdot k_{v}}{k_{v}+1} \cdot Z_{o t} \cdot R \cdot T_{o t}}
$$

Glassman approach

- Mass flow rate is reduced with the critical mass flow rate in the original approach

$$
\dot{m}_{r e d}=\frac{\dot{m}}{\rho_{c r} \cdot v_{c r} \cdot D_{2}^{2}}
$$

- $\rho / \rho_{c r}$ varies substantially in terms of k_{v}
=>

$$
\dot{m}_{r e d}=\frac{\dot{m}}{\rho_{0 t} \cdot v_{c r} \cdot D_{2}^{2}}
$$

Glassman approach

- Additional term σ is added to match to volume flow ratio across the compressor
- For a polytropic compression

$$
p v^{n}=\text { constant }
$$

The polytropic work can be estimated

$$
\begin{aligned}
y & =\frac{n}{n-1} \cdot Z \cdot R \cdot T \cdot\left(\pi^{\frac{n-1}{n}}-1\right) \\
\Rightarrow \sigma=\frac{\dot{V}_{\text {out }}}{\dot{V}_{\text {in }}} & =\pi^{-\frac{1}{n}}=\left(2 \cdot C \cdot \boldsymbol{\eta} \cdot \frac{k_{v}}{k_{v}+1} \cdot \frac{n-1}{n}+1\right)^{-\frac{1}{n-1}} \\
& \Rightarrow \dot{m}_{\text {red }}=\frac{\dot{m} \cdot \sigma}{\rho_{0 t} \cdot v_{c r} \cdot D_{2}^{2}}
\end{aligned}
$$

Methodology

Compressor geometry

- In-house design tool for sCO2 radial compressors
- Typical specific speed and specific diameter
- Vaneless diffuser and rectangular volute

parameter	D_{2}	$\boldsymbol{\beta}_{2}$	$\beta_{1 \text { s }}$	Specific speed	Specific diameter
value	0.16 m	105°	170°	0.23	4.5

Efficiency comparison

- Total efficiency

$$
\eta_{t}=\frac{y_{t}}{\Delta h_{t}}
$$

- Overall good agreement of results
- Small difference at high flow rate
- Left to the BEP of the reference condition $\boldsymbol{k}_{v}=4.1$ high difference in comparison with $\boldsymbol{k}_{v}=2.5$

Recirculation at the impeller inlet

- High recirculation takes place near the shroud for $k_{v}=4.1$
- Inlet flow coefficient for $k_{v}=4.1$ is smaller than for $k_{v}=2.5$
- The non-conventional steep blade angle near the shroud causes non-conventional steep drop in the efficiency

Reduced enthalpy

- Overall, good match of the reduced enthalpy change
- High difference at low reduced mass flow rate

Pressure ratio map

- Small variation in the pressure ratio along speed lines, $\beta_{2}=105^{\circ}$
- Wide variation in mass flow rate and pressure ratio

Pressure ratio map

- Around 3 percent deviation between the pressure ratio for $k v=4.1$ and $k v=7.1$
- Deviation increase up to 8 percent between kv=2.5 and kv=7.1
- Results show consistent effect of the isentropic exponent on the pressure ratio

- An attempt to establish pressure ratio performance map is conducted
- Effect of the isentropic exponent on the pressure ratio is shown
- Implementation and modification of the so-called Glassman approach is introduced for sCO_{2} compressors in order to reduce the pressure ratio dependency on the isentropic exponent
- Model verification conducted with help of CFD
- Deviation of the pressure ratio is limited to 3 percent for high isentropic exponent values (4.1-7.1)
- For isentropic exponent range (2.5-7.1) pressure ratio deviation increases to 8 percent

Thank you for your attention!

Ihab.abd-el-hussein@uni-due.de

