

Oregon State University

Practical Challenges and Failure Modes During Fabrication of Haynes 230 Micro-Pin Solar Receivers for High Temperature sCO₂ Operation

P. S. McNeff, B. K. Paul, O. N. Dogan, K. A. Rozman, S. Kissick, H. Wang, M. K. Drost and B. M. Fronk 3rd European Supercritical CO₂ Conference Paper # 2019-sCO2.eu-157 September 19, 2019

COLLEGE OF ENGINEERING

School of Mechanical, Industrial, and Manufacturing Engineering

Outline

1. Concept and Methods

2. Failure Modes

3. Failure Mitigation

4. Conclusions

Concentrated Solar Thermal Power

Primary Challenge $\eta = 1 - \frac{T_C}{T_H}$

 $q_{loss}'' \propto T_s^4$

4

Supercritical Brayton Cycle

sCO₂ High Flux Receiver Development

Project Goals

- Receiver efficiency > 90%
- sCO₂ from 550°C to 720°C
- *P* = 250 bar
- < $$150/kW_{th}$
- > 10,000 cycle life

Oregon State University

15 cm

15 cm

Micro-Pin Receiver Concept

Advantages

- $D_{\rm H} \Psi h \uparrow$
- Thin walls
- Reduced material
- Modularity

Challenges

- Thermal hydraulic
- Manufacturing
- Reliability

Module Design

K.R. Zada, M.B. Hyder, M. Kevin Drost, **B.M. Fronk**, Numbering-up of microscale devices for megawatt-scale supercritical carbon dioxide concentrating solar power receivers, J. Sol. Energy Eng. 138 (2016) 61007. doi:10.1115/1.4034516.

Prototype Development

Material – Haynes 230

Component	Weight %
Nickel	57 (balance)
Chromium	22
Tungsten	14
Molybdenum	2
Iron	3 (max)
Cobalt	5 (max)
Manganese	0.5
Silicon	0.4
Niobium	0.5 (max)
Aluminum	0.3
Titanium	0.1 (max)
Carbon	0.1
Lanthanum	0.02
Boron	0.015 (max)

- Corrosion resistance
- Allowable stress at temperature
- Ability to TLP/diffusion bond
- Weldabiltiy
- Ability to photochemical etch
- Ability to procure in required form factors

Fabrication Method

11

Fabrication Method – Pin Array

Variable	Dimension	Value
Name		
D _{pin}	Pin diameter	300 µm
h _{pin}	Pin height	150 µm
Ś	Longitudinal pitch	520 µm
S _T	Transverse pitch	600 µm
S _D	Diagonal pitch	600 µm

Fabrication Method – Transient Liquid Phase Bond

Interlayer with melting point depressant (P here)

- First NiCl strike was applied to help increase adhesion.
- Then, a 2 µm sulfonated layer of pure nickel was electrically deposited, followed by a 2 µm electroless mid-phosphorus layer (~6% P).
- This resulted in a phosphorous content of approximately 3% in the interlayer.
- The bonding temperature was 1150 °C at a vacuum pressure less than 1 \times 10⁻⁵ torr for a dwell time of 4 hours.

Fabrication Methods - Brazing

Header	W	L	D	t
	(mm)	(mm)	(mm)	(mm)
(A) Unit-cell header	8.125	16.25	6.25	5
(B) Module header	22.7	22.7	12.7	5

14

Proof Pressure Test

Failure Mode

Failure Mode Analysis

Failure Related to TLP

Limited bonding in "missing pin"

Failure Related to TLP

- Al-oxide in poorly bonded region
- Limited ductility in failure

Failure Related to TLP

- Slow/uneven diffusion of Phosphorous could yield an incomplete bond
- Bond could re-liquefy during braze or heat treatment
 - Slippage
 - Voids
 - O₂ ingression easier
- ACTION: Faster diffusing MPD or solid diffusion bond

Failure Related to Design

- Inlet/outlet slit region sensitive to manufacturing defects
- Pin array ideal for HT and ΔP , but not robust.

Failure Related to Braze

Failure Mode Mitigation

Failure Mode Identifier	Description
А	Liquification w/o bonding pressure (unbonded and poorly
	bonded pins)
В	Aluminum oxide formation
С	Voids
D	Cut pins due to wire EDM
E	Carbon contamination due to wire EDM
F	Insufficient safety factor for "missing" pins
G	Insufficient bonding pressure in slit region

Diffusion Bonding

- Concerns with Boron as MPD for TLP due to fast diffusion
- Move to solid diffusion bonding with and w/o nickel interlayer
- Solid joint at 1150 °C
- Good joint yield/ductility at 720
 °C

Design Modifications

- Pin and bar more robust
- Inlet/outlet slit bonding area increased
- Qualification testing ongoing

Design Modifications

Revised Brazing Methods

- Added heat treatment (stress relief) steps
- Increased braze thickness
- Improved surface prep
- Pass proof test >83 MPa at RT
- Good joint quality

Looking Forward

- Pathway to megawatt scale demonstrated
- Modular concept advantageous
 - Tailored receiver design
 - Manufacturability
- Physical test article designed and fabricated

 On-sun testing at UC-Davis in Q4 2019

Conclusions

- High temperature/pressure sCO2 heat exchanger development is challenging and expensive
- Solar thermal application even more extreme than other devices
- Printed circuit type HX with challenges related to
 - Joining
 - Design
- Lessons
 - Lab scale bonding may not scale to component level (uneven ramp rates, non-uniform diffusion etc.)
 - Manufacturing, thermal hydraulic and mechanical must be concurrently considered in design
 - Brazing high nickel alloys is non-trivial
- I am happy to share more detailed technical information with interested parties

Acknowledgments

- R. Malhotra (Rutgers)
- S. Apte (Oregon State)
- V. Narayanan (UC-Davis)
- E. Rasouli (UC-Davis)
- Matt Carl (NETL)

Questions? Brian.Fronk@oregonstate.edu

