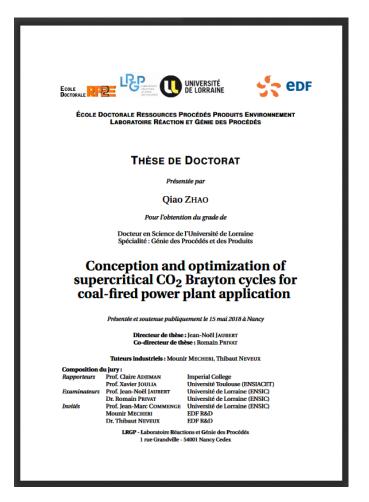
PROBABILISTIC TECHNIQUE FOR SOLVING COMPUTATIONAL PROBLEM:

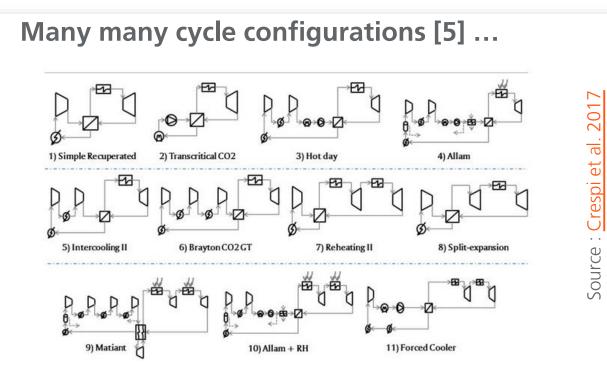

APPLICATION OF ANT COLONY OPTIMIZATION (ACO) TO FIND THE BEST SUPERCRITICAL CO_2 (s CO_2) BRAYTON CYCLE CONFIGURATION

2019-sCO2.eu-147

Qiao ZHAO ; Thibaut NEVEUX ; <u>Mounir MECHERI</u> – EDF-R&D, Chatou, France Jean-Noël JAUBERT ; Romain PRIVAT – LRGP, Nancy, France 3rd European supercritical CO₂ Conference September 19-20, 2019 - Paris, France

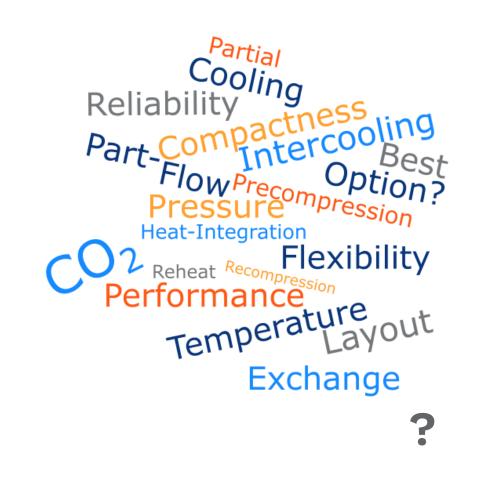
The results of this study are extracted from the PhD performed by Qiao ZHAO (EDF & LRGP) from 2015 to 2018

http://docnum.univ-lorraine.fr/public/DDOC_T_2018_0080_ZHAO.pdf



- 1. Introduction and context
- 2. Objectives
- 3. Methodology
- 4. Results
- 5. Conclusions and Perspectives

Introduction and Context


Which sCO₂ cycle for what application

...and many parameters :

Max./min temperature and pressure, number of reheat, intercooling, part-flow ratios...

Introduction and Context

Sensitivity analysis VS computational optimization

Sensitivity analysis:

Step by step "hand" calculations/runs

Non-automatic cycle layout modification

Manpower time consumption

Low number of studied cases (risk of missing optimal solution) **Computational optimization:**

One initial interaction (setting and rules)

Automatic cycle layout modification and simulation runs

Computer time consumption

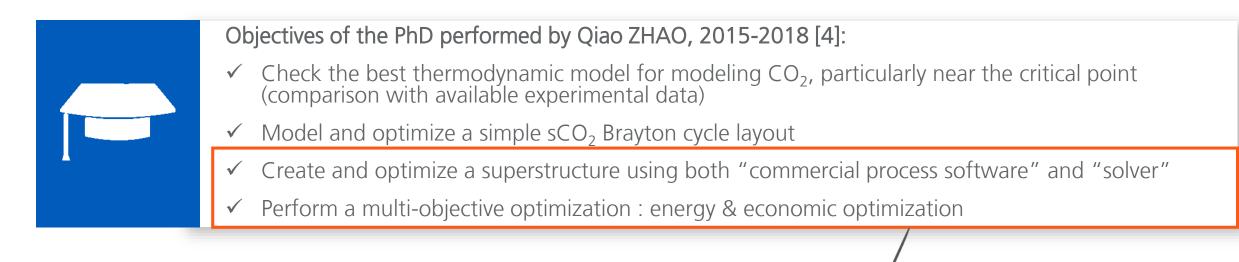
Computer pre-selection of best cases among high number of possibilities

Introduction and Context

Code approach VS Commercial existing software

VS

 Very specific to a given problem and methodology (accurate and refined)


- \checkmark Existing tools and data
- ✓ No need for code skills

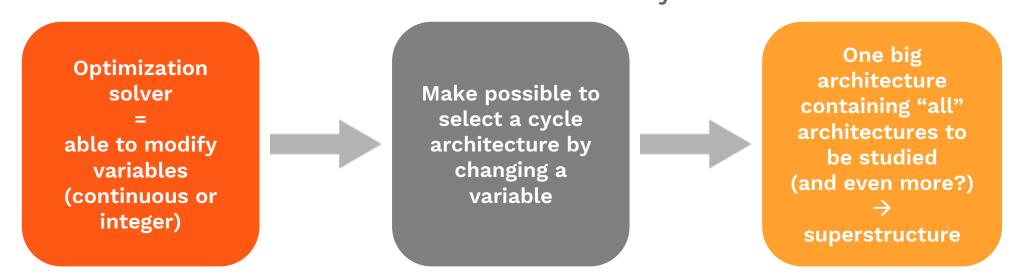
- 1. Introduction and context
- 2. Objectives
- 3. Methodology
- 4. Results
- 5. Conclusions and Perspectives

Objectives

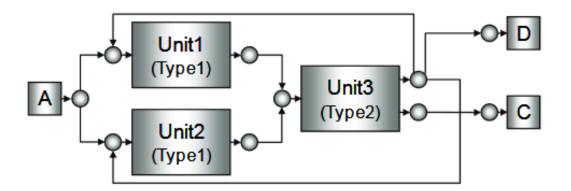
Objectives of this paper:

- Explain the global methodology used in the PhD (superstructure, optimization routine,...)
- ✓ Give the main assumptions and parameters of the study
- ✓ Share the main results and lessons learned
- \checkmark Outline the perspectives

- 1. Introduction and context
- 2. Objectives


3. Methodology

Concept of Superstructures Non-Linear optimization (definitions, optimization parameters and details) Optimization routine Problem definition and studied cases


- 4. Results
- 5. Conclusions and Perspectives

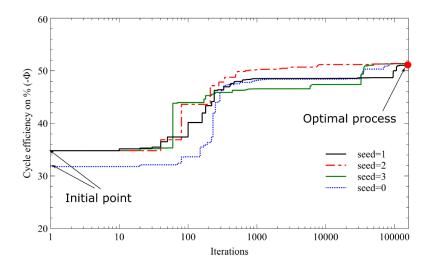
Automatic flowsheet generation: superstructure

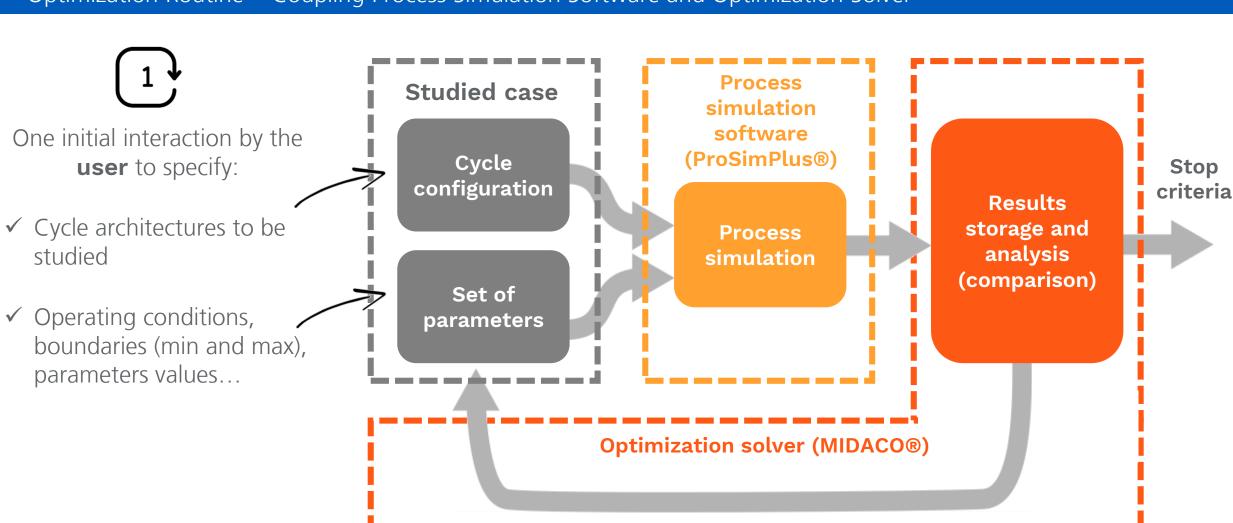
How to enable automatic switch between cycle architecture ?

The superstructure can easily be created in the Process Simulation Software, by using "split" modules (concept of "switch")

10

 \Box Non-linear problem \rightarrow can't be solved with classic/basic optimization methods (like gradient...)

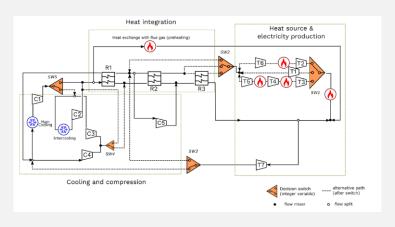

➔ Mixed Integer NonLinear Programming (MINLP) approach combined with meta-heuristic optimization technique : Mixed Integer Ant Colony Optimization (MIDACO) solver


MIDACO® solver

- ✓ Probabilistic technique
- ✓ Can be applied to continuous (NLP), discrete/integer (IP) and mixed integer (MINLP) problems...
- ✓ Single or Multi-objective optimization
- ✓ Suitable for equality or inequality constraints

Seed concept (randomness)

- ✓ Randomness of the initial ant colony population is controlled by a pseudo-random number generator called "seed"
- ✓ More promising strategy to execute several short runs of with different random seeds than performing only one very long run



Methodology

Superstructure

- Three "2-paths switches" and four "flow splits"
- □ Two "3-paths switches" $\rightarrow 2^{(3+4)} \times 3^2 = 1152$ alternatives
- 32 unit operations (incl. splitters and mixers)

Variables and bounds

- □ Main compressor inlet pressure
 - (3.3 to 10 MPa)
- **Compressors' outlet pressure**

(3.3 to 30 MPa)

- ❑ Cooling temperature (31 to
 100°C) (~87 to 212°F)
- □ Part flow rates (0 to 0.5)
- Heat exchanger cold and hot
 side outlet temperature (31 to
 620°C
- □ Turbine ratios (1 to 5)

See more in the thesis report [4]

Assumptions, fixed parameters

- Turbine inlet temperature = 620°C
 (1148°F)
- CO₂ flowrate before main cooling
 (kg/s) = 6000
- □ Minimum-Tpinch (K) = 10 (if relevant)
- □ Turbine is. efficiency (-) = 0.9
- □ Compressor is. efficiency (-) = 0.89
- Pressure drop in every component (%

of inlet pressure) = 1

Case study: specification of objective function(s)

Case 1 : <u>Mono</u>-objective function

Search for best performance (cycle net efficiency) in a given frame

➔ Technical constraints such as minimal pinch value (10K) to avoid theoretical results with "infinite heat exchanger surface) Case 2 : <u>Multi</u>-objective functions

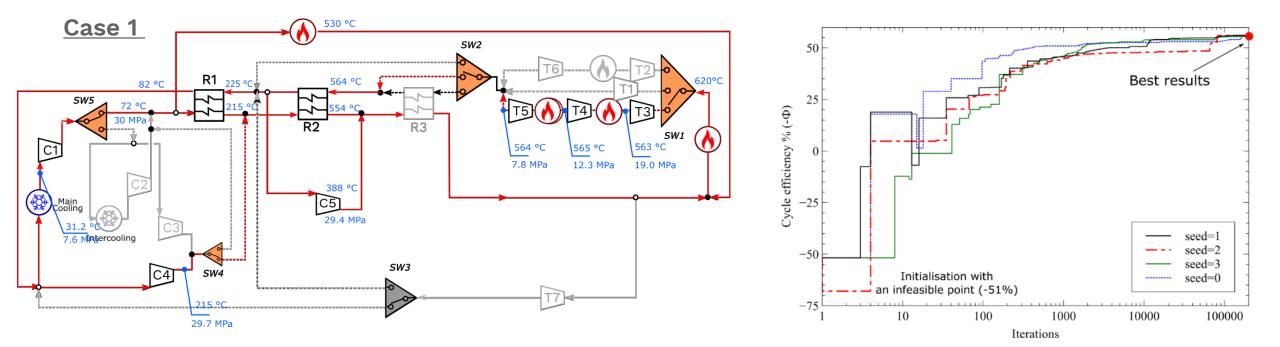
Search for:

- 1. Lowest electricity production cost (LCEO)
- 2. Lowest investment costs (CAPEX
- 3. Best performance (cycle efficiency)
- → Relaxing of technical constraints

Optimization result = initialization of -

See more details (formulas, economic hypotheses) in the thesis report [4]

- 1. Introduction and context
- 2. Objectives
- 3. Methodology

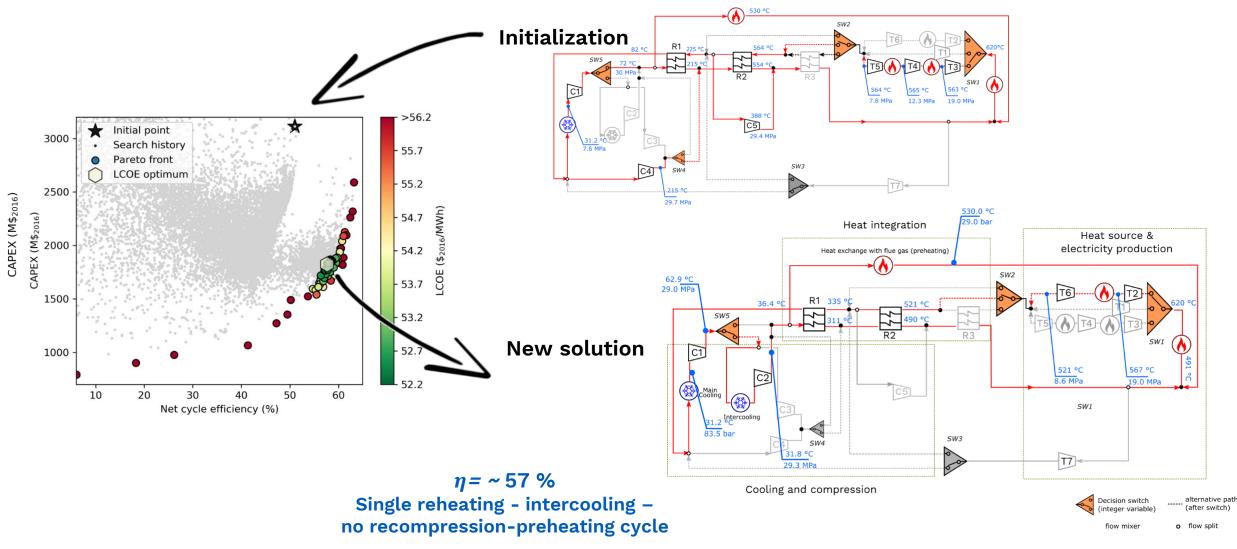

4. Results

Mono-objective optimization results Multi-objective optimization results

5. Conclusions and Perspectives

Results

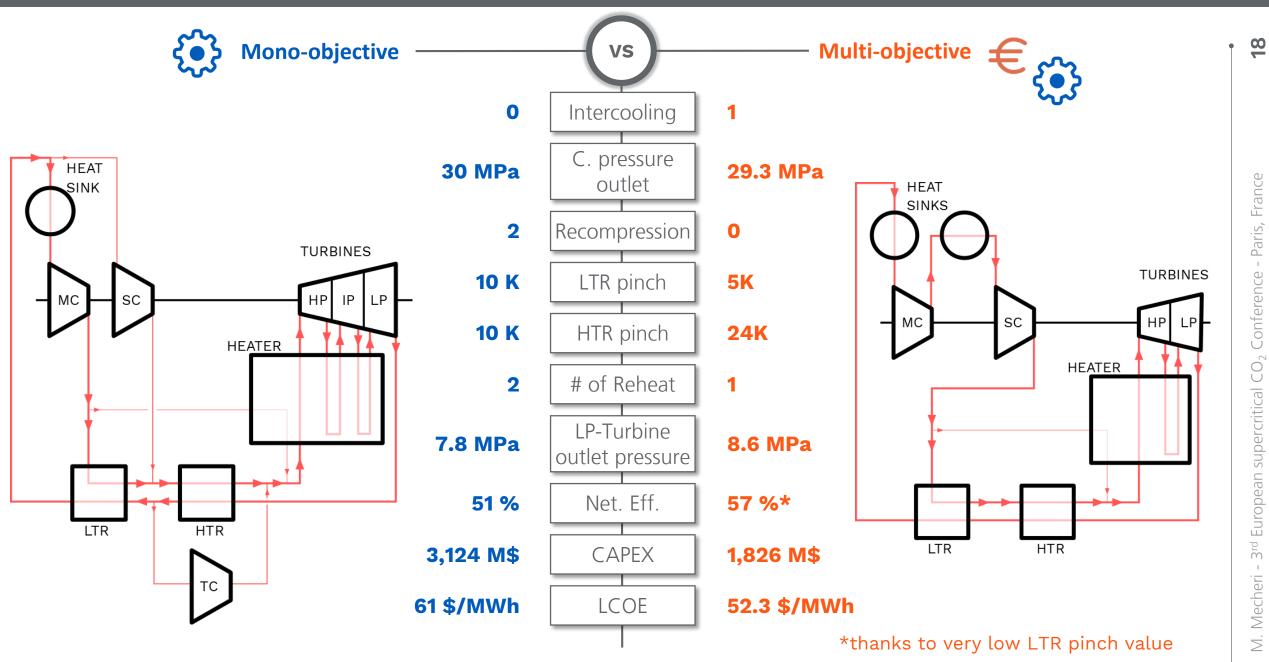
Mono-objective results: performance & energy maximization


 η = 51 % Double reheating-double recompressionpreheating cycle

 \rightarrow Initialization of next case

Results

Multi-objective results: Cost of electricity & Investment costs & Performances


M. Mecheri - 3rd European supercritical CO₂ Conference - Paris, France

September 19-20, 2019

17

Results comparison

M. Mecheri - 3rd European supercritical CO2 Conference - Paris, France

- 1. Introduction and context
- 2. Objectives
- 3. Methodology
- 4. Results
- 5. Conclusions and Perspectives

Conclusions and perspectives

B

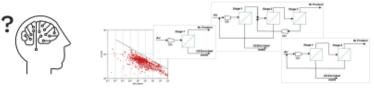
- ✓ Successful coupling of "commercial software" and "optimization solver"
- ✓ Interesting and Encouraging results
- ✓ Impact of the objective function and hypotheses
- ✓ List of advantages and drawbacks of this method

- Check, benchmark and refine the economic models
- ➤ Improve the CPU consumption time (several opportunities like meta-models...)
- > Improve the reliability of calculation: inclusion of uncertainties, variability...
- > Extension of the methodology to other applications
- > Comparison of different stochastic/probabilistic optimization methodologies

Related optimization topics in EDF R&D...

12th European Congress of Chemical Engineering (ECCE12) – sept. 15th/16th 2019 by Dr. Thibaut NEVEUX

europe

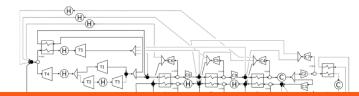

Retrofit of Dunhuang 10 MW molten salt plan with a high temperature supercritical CO₂ cycl

Comparison of process synthesis methods:

case study of the design of membrane separation processes

Thibaut Neveux⁽³, Bernardetta Addis², Christophe Castel³, Veronica Picciall⁴, Eric Favre³

² Driversité de Lorraine, CNRS, LORIA, F-64000 Nancy, France ³ Université de Lorraine, CNRS, LORIA, F-64000 Nancy, France ⁴ Université de Lorraine, CNRS, LRGP, F-64000 Nancy, France ⁴ University of Rome Tor Vergata, 00133 Rome, Italy



12th European Congress of Chemical Engineering (ECCE 12)

Cycle selection and design – methodology 2/2

Optimization driven design with 2 approaches

- 1. « classic design » by simulation based on expertise learn and understood the design drivers
- global optimization tool based on MINLP optimizer coupled with a cycle superstructure sure to not miss a good solution and explore out of the box ideas

Overview of Process Synthesis methods

	Superstructure with global NLP [1]	Superstructure with global MINLP [2]	Ab-initio [3]
Synthesis approach / search space	Superstructure (given set of alternatives)	Superstructure (given set of alternatives)	Library of unit operations (ab-initio, no superstructure)
System modelling	Equation-oriented	Simulator-based	Simulator-based
Optimization	Monotonic Basin Hopping + local NLP	MINLP solved by Ant Colony Optimization	Evolutionary Programming + local NLP
Software tools	Programming (AMPL + KNITRO solver)	Graphical (Commercial process simulator + MIDACO solver)	Programming (In-house simulator + SLSQP solver)

[1] Ramirez-Santos et al. (2019), Journal of Membrane Science 565, 346-366 [2] Zhao et al. (2017) Computer Alded Charmolal Engineering 343, 767-772 [3] Newux, [2018], Charmical Engineering Science 185, 299-22. Comparison of process synthesis methods: case study of the design of membrane [3] Newux, [2018], Charmical Engineering Science 185, 299-22. Comparison of process synthesis methods: case study of the design of membrane [3] Newux, [2018], Charmical Engineering Science 185, 299-22. Comparison of process synthesis methods: case study of the design of membrane [3] Newux, [3] New [3] N

123 - Machine Learning Based Design of a Supercritical CO₂ Concentrating Solar Power Plant Nabil, Tahar; Le Moullec, Yann; Le Coz, Adrien EDF R&D China

M. Mecheri - 3rd European supercritical CO2 Conference - Paris, France

Thank you for your attention

Contacts

Ms. Qiao ZHAO

M. Mounir MECHERI – mounir.mecheri@edf.fr

M. Thibaut NEVEUX - thibaut.neveux@edf.fr

M. Jean-Noël JAUBERT – jean-noel.jaubert@univ-lorraine.fr

M. Romain PRIVAT – <u>romain.privat@univ-lorraine.fr</u>

Acknowledgement

The results of this study are extracted from the PhD performed by Qiao ZHAO (EDF & LRGP) from 2015 to 2018

http://docnum.univ-lorraine.fr/public/DDOC_T_2018_0080_ZHAO.pdf

M. Mecheri - 3rd European supercritical CO₂ Conference - Paris, France

September 19-20, 2019

References

- [1]: Feher E.G. The supercritical thermodynamic power cycle; Energy Convers Manag, 8 (2) (1968), pp. 85-90
- [2]: Angelino G. Carbon dioxide condensation cycles for power production; ASME; J. Eng. Power; 1968.
- [3]: Dostal V., Driscoll M.J., and Hejzlar P. A supercritical carbon dioxide cycle for next generation nuclear reactors. PhD thesis, MIT, 2004.
- [4]: <u>Zhao Q</u>. Conception and optimization of supercritical CO₂ Brayton cycles for coal-fired power plant application; Université de Lorraine, 2018. English. NNT: 2018LORR0080 <u>http://docnum.univ-lorraine.fr/public/DDOC_T_2018_0080_ZHAO.pdf</u>
- [5]: Crespi F., Gavagnin G., Sanchez D., Martinez S.M. Supercritical carbon dioxide cycles for power generation: A review; Applied Energy 195 (2017) 152–183 https://doi.org/10.1016/j.apenergy.2017.02.048
- [6]: Serrano I.P, Linares J.I., Cantizano A., Moratilla B.Y Enhanced arrangement for recuperators in supercritical CO₂ Brayton power cycle for energy conversion in fusion reactors; Fusion Engineering and Design; Volume 89, Issues 9–10, October 2014, Pages 1909-1912; <u>https://doi.org/10.1016/j.fusengdes.2014.03.083</u>
- [7]: Wang L., Pan L.M, Wang J, Chen D., Huang Y., Hu L. Investigation on the temperature sensitivity of the S-CO₂ Brayton cycle efficiency, Energy, Volume 178, 2019, Pages 739-750, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2019.04.100
- [8]: Marchionni M., Bianchi G., Tsamos K.M., Tassou S.A Techno-economic comparison of different cycle architectures for high temperature waste heat to power conversion systems using CO₂ in supercritical phase; 1st International Conference on Sustainable Energy and Resource Use in Food Chains, ICSEF 2017, 19-20 April 2017, Berkshire, UK
- [9]: Discroll M.J. Supercritical CO2 Plant Cost Assessment; Center for Advanced Nuclear Energy Systems MIT Nuclear Engineering Department; September 2004 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.502.4874&rep=rep1&type=pdf
- [10] Khadse A., Blanchette L., Kapat J., Vasu S., Hossain J., Donazollo A. Optimization of Supercritical CO₂ Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm; Journal of Energy Resources Technology Copyright VC 2018 by ASME JULY 2018, Vol. 140 / 071601-1
- [11]: Henao C.A., A superstructure Modeling Framework For Process Synthesis Using Surrogate Models; University Of Wisconsin-Madison; 2012;
- [12]: M. Dorigo, T. Stützle, Ant Colony Optimization: Overview and Recent Advances. M. Gendreau and Y. Potvin, editors, Handbook of Metaheuristics, 2nd edition. Vol. 146 in International Series in Operations Research & Management Science, pp. 227--263. Springer, Verlag, New York, 2010. <u>https://rd.springer.com/chapter/10.1007%2F978-1-4419-1665-5_8</u>
- [13]: MIDACO Solver http://www.midaco-solver.com/
- [14]: ProSimPlus; Steady-State Process Simulation and Optimization [accessed April 2019]: <u>http://www.prosim.net/bibliotheque/File/Brochures/Brochure_PSP-En-2018-compressed.pdf</u>
- [15]: User manual of MIDACO-Solver; [accessed April 2019] http://www.midaco-solver.com/data/other/MIDACO_User_Manual.pdf