Modelling and Optimisation of Supercritical Carbon Dioxide Turbomachinery

Ruan van der Westhuizen, Johan van der Spuy, Albert Groenwold, Robert Dobson

Solar Thermal Energy Research Group (STERG) Department of Mechanical and Mechatronic Engineering Stellenbosch University

South Africa

19 - 20 September 2019 | Paris, France

Preface

- sCO₂ turbomachinery industry is undeveloped
- Conventional methods of turbomachinery design are not necessarily applicable to sCO₂
- Global optimisation (exploration of full design space) is difficult to achieve using conventional methods
- Turbomachinery design is usually decoupled from system design and optimisation

Contents

- 1. Conventional design/optimisation methods
- 2. Objectives of new design/optimisation method
- 3. Overview of turbomachinery models
- 4. Details and implementation of optimisation

sC02

- 5. Key results
- 6. Preview of future work areas

Turbomachinery Design Methods

- Iteration and evolution
 - Reliance on empirical data
 - Depends on knowledge and experience of designer
- Computational fluid dynamics (CFD)
 - Computationally expensive, but can be improved somewhat with response surface models (RSM's)
 - Practically impossible to use for system-level optimisation

Source: Dixon and Hall (2014)

Source: NUMECA (2019)

Objectives of New Models

- Describe turbomachinery in isolation and as part of a larger power system
- Gradient-based mathematical optimisation
 - Models should consist exclusively of equations
- Modular and adaptable
 - Add more accurate correlations as empirical data become available
 - Flexibility to choose between accuracy and speed

Geometry of a Radial Turbomachine Stage

Same notation can be used for turbine and compressor

Equality Constraints

- Conservation of Mass
 - $-\dot{m} = \rho V_m A$
- Conservation of Momentum

 Velocity triangles
- Thermodynamic properties
 - Only two thermodynamic properties are independent
 - Correlations of the form $x_3 = ax_1 + bx_2 + c$... can be used

3rd European sCO2 Conference

19 - 20 September 2019 | Paris, France

Conservation of Energy and Loss Coefficients

visit concentrating.sun.ac.za

sterg@sun.ac.za

contact

Conservation of Energy: A Closer Look

 $\dot{W}_{\text{fluid}} = M\omega \longrightarrow$ "internal" transfer of momentum

 $\dot{W}_{\text{thermodynamic}} = \dot{m}(h_{02} - h_{03}) \longrightarrow \text{"external" measurements}$

 $\dot{W}_{\text{parasitic}} = \left| \dot{W}_{\text{thermodynamic}} - \dot{W}_{\text{fluid}} \right| \longrightarrow \text{e.g. clearance, windage}$

 $h_{01} = h_{02}$ $h_{03} = h_{04}$ \longrightarrow nozzle and diffuser sections

Loss Coefficients

$$\zeta_R = \frac{h_0 - h_{0s}}{\frac{1}{2}(R_2)^2}$$

$$\zeta_P = \frac{w_{\text{parasitic}}}{\frac{1}{2}(R_2)^2}$$

$$\eta_{D} = \frac{\frac{P_{\text{out}} - P_{\text{in}}}{P_{0,\text{in}} - P_{\text{in}}} / 1 - (AR)^{2}$$

STERG

3rd European sCO2 Conference 19 - 20 September 2019 | Paris, France

- Dimensionless
- **Function of** machine design
- **Function of** operating conditions
- **Determine numerical** values using

contact

- Experiments
- CFD

Introduction to CompAero

interface for providing inputs

mpe.	Ller	Geome	try

rms inlet blade angle	29.9683
rms inlet diameter	0.13848
Inlet passage width	0.01974
Hub inlet diameter	0.11733
Shroud inlet diameter	0.15681
Hub inlet blade angle	33.6824
Shroud inlet blade angle	26.8081
Inlet rms cone angle	4.79044
Inlet rms b/Rc	0.48685
Inlet rms blade thickness	0.00092
Inlet fillet blockage	0.00000
Meridional passage length	0.11766
Splitter passage length	0.00000
Disk diameter	0.33523
Disk/housing clearance	0.00394
Tip width (with extension)	0.00000
Throat rms blade angle	27.3060
Inlet net area	0.00783
Blade passage length	0.19380
Eye shroud diameter	0.15681
Slip factor	0.89346

sCO2

Calibration and Verification

Calibrated coefficients for zero error with CompAero:

Coefficients	Value
Rotor loss coefficient, ζ_R	0.619
Parasitic work coefficient, ζ_P	0.0108
Diffuser efficiency, η_D	0.972
Slip factor, σ	0.808

Observed errors (same coefficients applied to different machine):

Results	CompAero	This work	Error
Tip total temperature, T_{02}	388 K	385 K	0.8%
Tip total pressure, P_{02}	375 kPa	370 kPa	1.3%
Stage exit total temperature, T_{01}	388 K	384 K	1.0%
Stage exit total pressure, P_{01}	284 kPa	321 kPa	13%
Fluid power, \dot{W}_F	28.0 kW	26.3 kW	6.1%

sCO2

Inequality Constraints

- Mach number limits
- Converging area ratio for nozzle section
- Diverging area ratio for diffuser section
- Typical design ranges (Korpela, 2011)
 - Angles
 - Velocity ratios
 - Blade geometry ratios

contact

Practical Implementation

- 1. Write a function that returns the solution to the inequality and equality constraints: g, h = function 1(x)
- 2. Write a function that returns the solution to the objective function: f = function 2(x)
- 3. List upper and lower bounds for all variables: \check{x} and \hat{x}
- 4. Select appropriate constraint tolerance (e.g. $0.001 \approx 0$)
- 5. Solve for various random starting points: $x_1, x_2, ..., x_N$ (*fmincon* in MATLAB Optimization Toolbox or similar algorithm)

Starting points are independent: speed scales well with CPU single-thread performance **and** CPU count

Compressor Optimisation Results

Key Constraints:

- **Constant** inlet temperature and pressure
- Constant • pressure ratio

3rd European sCO2 Conference 19 - 20 September 2019 | Paris, France

visit concentrating.sun.ac.za sterg@sun.ac.za

contact

Turbine Optimisation Results

Key Constraints:

- **Constant inlet** temperature and pressure
- **Constant rotor** • tip radius

<<u>CO2</u>

80

120

160

front 1

Future Work: Improved Loss Modelling

Seek coefficients that are universally applicable (i.e. correlated against dimensionless parameters)

Future Work: Improved Loss Modelling

- Pareto front may or may not be influenced by magnitude of losses
- Suggests that optimal values of some variables may be independent of losses

Future Work: Off-Design Performance

- Same optimisation method and algorithm can be applied to generate off-design performance maps
- Requires only changes to which variables are kept constant

Concluding Remarks

- An alternative turbomachinery design method
 has been introduced
 - Can be applied to system-level modelling
 - Global mathematical optimisation as basis
 - Can easily be extended to off-design performance modelling
- It is useful to choose sensible constraints a priori
- Accurate loss modelling is an important consideration for sCO₂ turbomachinery design, but losses only influence some variables

Acknowledgements

Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

STERG@sun.ac.za +27 (0)21 808 4016

concentrating.sun.ac.za

visit concentrating.sun.ac.za contact sterg@sun.ac.za

21

Thanks

Ruan van der Westhuizen rvanderwesthuizen@sun.ac.za

