



EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER AND PRESSURE DROP IN TUBES TO COOL CO<sub>2</sub> NEAR THE CRITICAL POINT

**IKE** 

Andreas Wahl Rainer Mertz Joerg Starflinger Eckart Laurien

# Outline

- Motivation and aims
- Experimental setup
- Data reduction
- Results
- Conclusion and next steps

# **Motivation**

flexible and efficient 25 MWe sCO<sub>2</sub> brayton cycle







- >Support of the development of compact heat exchanger
  - surface compactness
  - robustness

University of Stuttgart

#### Variabel fluid properties near the critical point of CO<sub>2</sub>

- Design point
  - p<sub>in</sub> = 81 bar,
    T<sub>in</sub> = 62°C,
  - $T_{in} = 02 \text{ C},$ •  $T_{out} = 33^{\circ}\text{C}$
- Variable fluid properties influence local heat transfer

**127** – CONFIGURATION OF A FLEXIBLE AND EFFICIENT SCO2 CYCLE FOR FOSSIL POWER PLANT

 $156-{\sf part-load}\ {\sf operation}\ {\sf of}\ {\sf coal}\ {\sf fired}\ {\sf sco2}\ {\sf power}\ {\sf plants}$ 



University of Stuttgart

#### Aim of work

- Experimental cooling heat transfer and pressure drop in 2 mm single channel flow
- recommendation of heat transfer correlation to be used for design of compact HX



Compact HX, IKE, Stuttgart



Plate and Fin HX, Fives Cryo, France 150 — Highly Efficient plate-fin heat exchanger (PFHE) TECHNICAL DEVELOPMENT FOR S-CO2POWER CYCLES

University of Stuttgart

# Experimental setup for cooling heat transfer (I)



University of Stuttgart

# Experimental setup for cooling heat transfer (II)

150 – OPERATIONAL EXPERIENCES AND DESIGN OF THE SCO2-HERO LOOP



University of Stuttgart

<sup>19/09/2019</sup> 7

|                                            | CO <sub>2</sub> |             |
|--------------------------------------------|-----------------|-------------|
| Temperature                                | Pressure        | Mass flux   |
| $\begin{bmatrix} \circ \\ C \end{bmatrix}$ | [bar]           | $[kg/m^2s]$ |
| 60                                         | 77              | 400         |
| 80                                         | 81              | 850         |
|                                            | 85              | 1400        |

| Cooling media |  |  |  |
|---------------|--|--|--|
| Volumetric    |  |  |  |
| flow [l/s]    |  |  |  |
| 0.1-0.2       |  |  |  |
|               |  |  |  |

| condition  | Flow       | Number of   |       |
|------------|------------|-------------|-------|
|            | direction  | experiments |       |
| isothermal | horizontal | 91          | 7     |
| cooled     | horizontal | 64          | = 198 |
| cooled     | upwards    | 25          |       |
| cooled     | downwards  | 18          |       |

# **Experimental matrix**

University of Stuttgart

#### **Data reduction**



- Assumption:
- 1.  $htc_{cool} = constant$

#### Calculation:

- 1.  $\dot{Q}_{cool} = htc_{cool} \cdot A_{out} \cdot (T_{wall} T_{cool})$
- 2.  $\dot{Q}_{CO2} = \dot{Q}_{cool} = htc_{CO2} \cdot A_{in} \cdot (T_{CO2} T_{wall})$
- 3.  $H_{cool}(x) = H_{cool}(0) + \frac{\pi d}{\dot{m}_{cool}} \int_0^x \dot{q}(x) dx$
- 4.  $H_{CO2}(x) = H_{CO2}(0) \frac{\pi d}{\dot{m}_{CO2}} \int_0^x \dot{q}(x) dx$
- Fluid properties: NIST-REFPROP



## **Experimental system validation**

\* C. Dang and E. Hihara, "In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measurement", *International Journal of Refrigeration* (7), pp. 736–747 (2004).

University of Stuttgart

# Effect of mass flux variation



University of Stuttgart





University of Stuttgart

# Effect of cooling media temperature variation



University of Stuttgart



# Effect of flow direction variation

19/09/2019 14

 $\frac{Gr}{Re^{2.7}}$  > 10<sup>-5</sup> \*Jackson and Hall

University of Stuttgart

#### Isothermal pressure drop



University of Stuttgart



## **Cooled pressure drop**

prediction by:

• 
$$\Delta p = \zeta \frac{l}{d} \frac{\rho u^2}{2} = \frac{8}{\pi^2} \zeta (Re_{b,f,W}, K) \frac{l \cdot \dot{m}^2}{d_i^5 \cdot \rho(T_{b,f,W}, p)}$$

• 
$$K = 10.8 \, \mu m$$

$$\bullet \quad T_f = (T_b + T_w)/2$$

 $\checkmark$  best prediction with film properties

University of Stuttgart

## **Conclusion and next steps**

□ 198 experiments performed at IKE, University of Stuttgart

- Effect of mass flux on htc enhances near the pseudo-critical-point
- Increasing inlet pressure leads to smaller peak
- Heat transfer is enhanced with smaller temperature difference between CO<sub>2</sub> and cooling media
- No difference between up- and downwards flow was found
- Friction factor of isothermal measurements shows trend like expected in rough tubes
- Pressure drop of cooled experiments can be predicted with the properties of the film

❑Next steps:

- 3 mm diameter tube to investigate influence of flow direction
- small-scale heat exchanger plate with multiple channel and comparison with results of single channel heat transfer

#### **Acknowledgements**



This project has received funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 764690

University of Stuttgart



# Thank you!



## **Andreas Wahl**

e-mail andreas.wahl@ike.uni-stuttgart.de phone +49 (0) 711 685-60787 fax +49 (0) 711 685-62010

University of Stuttgart Institute of Nuclear Technology and Energy Systems Pfaffenwaldring 31, 70569 Stuttgart