

## **CONFIGURATION OF A FLEXIBLE AND EFFICIENT SCO2 CYCLE FOR FOSSIL POWER PLANT**

### 3rd sCO2 European Conference



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764690-

# Why a flexible cycle for fossil plant ?



10

- Growing electricity demand
- Emergence of renewable energies
- Increasingly complex network management
- Electricity still predominantly fossil

• Hopes







sCQflex



- Reality
  - Future scenarios: fossil fuels will still remain important source



## **Project Objectives**



- Design a more flexible and less environmentally damaging cycle
  - Take into account from the design stage the constraints due to flexibility
  - Eliminate as much as possible future, costly modifications that penalize the plant's efficiency
  - Cycle with lower GHG emissions than the current cycle, less penalised if post-combustion CO2 capture
- Propose an innovative solution.
  - Reduction of the general environmental impact (less material, footprint.
  - Possibility of using other heat sources (solar, nuclear, biomass,...)
  - Use a sCO2 cycle





1st Step: Do not adapt the current steam cycles

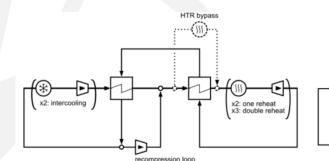
=> Scientific literature and modelling of new cycle configurations with sCO2

2nd Step: Take into account flexibility constraints

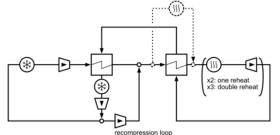
=> Model future scenarios for the use of this type of power plant, which are more constraining than the current scenarios

3rd Step: Choose design to maintain correct cycle performance
> Starting efficiency high enough to be able to integrate future constraints (new pollution control equipment, cO2 capture...)
=> Easy to operate, not too complex design

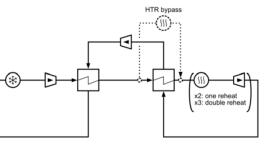
# **1st Step : Define different cycle configurations**



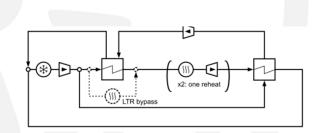

- Must fit boiler constraints
  - low temperature of the working fluid at the boiler inlet
  - low pressure drops for high flow rate,
  - good heat integration for a high boiler efficiency...
- Must be efficient and suitable for flexible operation loads
- => previous simulations (Mecheri & Le Moullec, 2016) and literature: reduction to 21 configurations, divided into 6 basic forms


sCQflex

## **1st Step: Base Forms**







**Recompression cycles** 

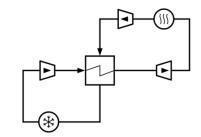


HTR bypass



### Pre-compression cycles




Turbine split flow cycles

10

()) x2: one reheat x3: double reheat

Partial cooling cycles

### Pre-heating cycles



Split expansion cycles

### **1st Step : Modelisation of the 21 cycles**



#### Fixed Parameters :

| PARAMETER                                                                        | UNIT                | VALUE                                              |
|----------------------------------------------------------------------------------|---------------------|----------------------------------------------------|
| Net cycle production                                                             | MWe                 | 25                                                 |
| CO <sub>2</sub> temperature at the heat<br>sink outlet (MSCUSXXT2)               | °C                  | 33                                                 |
| Maximum CO <sub>2</sub> temperature at<br>the heater outlet<br>(MSHSOXXT2)       | °C                  | 620                                                |
| Maximum CO <sub>2</sub> pressure at the<br>main compressor outlet<br>(MSCOMXXP2) | MPa                 | 25.0                                               |
| Compressors isentropic efficiency                                                | %                   | 80                                                 |
| Turbine isentropic efficiency                                                    | %                   | 90                                                 |
| Pressure drops in the heater<br>(MSHSOXX)                                        | MPa                 | No reheat:<br>0.25                                 |
|                                                                                  |                     | One reheat: $0.2 + 0.1$                            |
|                                                                                  |                     | Two reheats:<br>0.2+0.1+0.1<br>HTR/LTR<br>bypass : |
|                                                                                  |                     | 0.1+0.2                                            |
| Pressure drops in the recuperators (MSRCUXX)                                     | % of inlet pressure | 0.5                                                |
| Pressure drops in the heat sink                                                  | % of inlet          | 0.5                                                |
| heat exchanger (MSCUSXX)                                                         | pressure            |                                                    |
| Maximum number of intercooling                                                   | 1                   |                                                    |
| Auxiliary consumption                                                            | MWe                 | -                                                  |
| Boiler maximal efficiency                                                        | %                   | 94                                                 |
| CO <sub>2</sub> purity                                                           | %                   | 100                                                |

### Parameters for sensibility analyses:

| MODIFIED<br>PARAMETER                                     | NEW VALUES                                                                        |  |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Heat exchanger and boiler pressure drops                  | HEx pressure drops = 0.1% of<br>inlet pressure<br>Boiler pressure drops = 0.1 MPa |  |
| Heat exchanger and boiler pressure drops                  | HEx pressure drops = 1% of<br>inlet pressure<br>Boiler pressure drops = 0.5 MPa   |  |
| Boiler outlet maximal temperature                         | 550°C (with compressor outlet<br>pressure = 20 MPa)                               |  |
| Boiler outlet maximal temperature                         | 700°C (with compressor outlet<br>pressure = 30 MPa)                               |  |
| CO <sub>2</sub> minimal temperature (cooling temperature) | 30°C                                                                              |  |
| CO <sub>2</sub> minimal temperature (cooling temperature) | 34°C                                                                              |  |

## Modelisations of all the cycles with Aspen

# **1st Step: results of modelisations**



Modelisations results:

- Effect of reheating: CO2 mass flow reduced when cycle efficiency increases
- Effect of intercooling: slightly increase the cycle efficiency while ensuring at slightly lower CO2 temperature at the boiler inlet.
- Effect of bypassing the recuperator: minor impact on the cycle performance and enables to reduce the minimal CO2 temperature at the boiler inlet

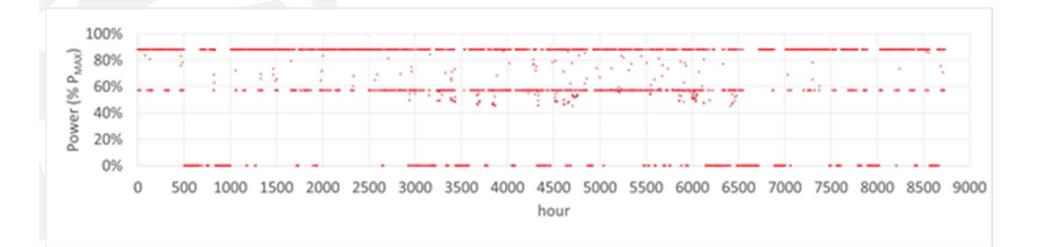
Main sensibility analysis results:

- Cycle pressure drops, and boiler outlet temperature have high impact on the cycle efficiency
- Cooling temperature and main compressor outlet pressure have lower impact of the cycle performance
- Cycle temperature balance impacted by the pressure drops
- Cooling temperature variation study shows that the cycle performance will be affected by variability on the cooling temperature (flexibility)

# 2nd Step : Modelisation of future use of the plant



Study of the different energy mix scenarios:


- EU Reference Scenario: in phase with the European energy and environmental targets
  - 50% of renewable energy in the electricity mix
  - + 27% of energy performance
  - IEA analysis



# 2nd Step: Modelisation of future use of the plant



Modelisation with EDF software : 2030 Plant operation



# 2nd Step: Flexibility constraints



sCO2 boiler:

- Most of the current steam boiler constraints are expected
- Combustion should still be the same
- Global geometry is not expected to be completely different from current technologies
- Only the working fluid is changed

sCO2 turbine:

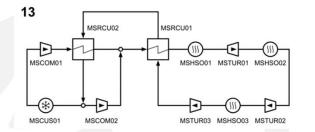
- More compact than current steam turbines => problems related to thermal expansion will be different
  - Limitation of the differential expansion,
  - Increased impact of leakage losses on turbine efficiency possible

# **3rd Step : Final configurations choice**



Constraints related to the project sCO2-Flex objectives:

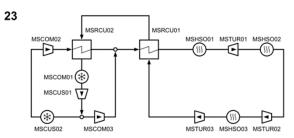
- Performance
  - Most efficient cycles: recompression cycles
  - Most pejorative cycles: double reheat cycles
    - more complex and challenging for the turbomachines
    - Boiler CO2 temperature about 540°C, higher than 470°C and not recommended for boiler integrity
- Flexibility and the control of the cycle
  - Complex and multipart cycle architectures can be difficult to control and regulate.
  - Simple cycle architecture privileged


## **3rd Step : Final configurations choice**



Constraints related to the components:

- Boiler
  - Integrity depends on cooling capacity of the working fluid (CO2 in our case) to protect the boiler tubes and wall surfaces.
  - CO2 temperature in the boiler must be securely and accurately controlled to ensure material protection
  - Turbomachinery
    - Design of turbomachines changes when cycle architecture changed (size, rotation speed, number of stages...)
    - Mechanical and manufacturing point of view: Precompression cycles are more suitable


## **Conclusion : 3 cycle configurations**



For performance:

10

Recompression cycle with double reheat



For components integrity:

Partial cooling cycle with double reheat

For Simplicity: Pre-compression cycle

MSCOM01

MSRCU0

MSRCU02

31

MSCOM02

MSCUS01



MSHSO01

MSTUR01

## Conclusion



Main objective of the study:

Find several configurations of supercritical CO2 cycles that would offer a compromise between performance and flexibility

**Difficulty:** 

Break free from the habits associated with conventional steam and water cycles

- Identification and modelisation of 21 cycles configurations
- New annual reports on operation of thermal plant
- Operating and components experts review to choose the most interesting cycles

### Perspectives:

10

Optimize the most interesting configuration according to developments of turbomachines, exchangers, boiler as well as the optimization of the control system.



**CAGNAC** Albannie

albannie.cagnac-1@edf.fr

MECHERI Mounir BEDOGNI Stefano

EDF R&D