3rd European supercritical CO₂ Conference September 19-20, 2019, Paris, France

CSP Development in China and sCO₂ Research at Zhejiang University

Gang Xiao¹, Kaixiang Xing¹, Jinyi Zhang², Yann Le Moullec², Pan Zhou², Tianfeng Yang¹, Mingjiang Ni¹ and Kefa Cen¹ ¹State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China ²EDF R&D China Beijing, China Emails: xiaogangtianmen@zju.edu.cn 3120102460@zju.edu.cn

Paris, Sep. 20, 2019

Zhejiang University, Hangzhou, China

Introduction of Hangzhou

- A historical and cultural city
- The most famous national tourist city in China

Zhejiang University, Hangzhou, China

State Key Lab of Clean Energy Utilization *@* **Zhejiang University**

Faculties and Students

≻50 faculties
≻ ~50 staffs
≻ ~500 graduated students

International Cooperation Centers

- **ZJU-Princeton Univ.** Jiont Research Center on Hydrogen Energy
- **ZJU-Standford Univ.** Jiount Research Center on Combustion Chemsitry
- **ZJU-UIUC** (University of Illinois at Urbana-Champaign) International Center for Bioenergy
- ZJU-Leeds Univ.
 International Center for Sustainable Energy Science and Tech.
- ZJU-KTH

Jiont Research Center on Clean Energy Utilization

• ZJU-Lund Univ.

International Center for Laser Diagnostics in Energy Science

- ZJU-Purdue International Center for Clean Energy Research Initiative
 ZJU-Austrialia
 - **ZJU-Austrialia** BHP Billiton Jiont lab
-

Research fields

Our research : CSP

> High-temperature reviver and storage

- ✓ Air/particle receiver
- ✓ sensible/chemical storage

> Advanced cycles

- ✓ Air Brayton
- ✓ S-CO2 Brayton
- ✓ Stirling cycle
- ✓ PETE

Solar resources: potential renewable energy

CSP Development in China

中广核CGN 50MW Parabolic Trough

首航Shouhang 100MW tower

中控Supcon 50MW tower

3 has been built, 5 will be completed in 2019, 8 will be finished in 2020

Electricity transmission from West to East of China

Feasibility reports of ~40GW CSP projects have been made

Large-scale CSP parks -planning
 Ultra HVDC Transmission-operating
 Ultra HVDC Transmission-- under construction
 Ultra HVDC Transmission-planning

UHVDC>800kV

Water is challenging
 Advanced technology is expected

Challenges & next generation technologies

Items	Trough&Fresnel	Tower	Dish	•••••	
Concentration ratio	60~130	400~600	500-1000	400-2000	
Heat transfer	Oil/steam/MS	molten salt/DSG	H2/He	gas/solid	
Working medium	water/steam	water/steam	H2/He	gas/solid	
Cycle	Rankine	Rankine	Stirling	Brayton/combined	
Temperature	<400°C	<580°C	700-800°C	700-1400°C	
$\eta_{ m e}$	<15%	<20%	<32%	25-40%	
Water kg/(kWh)	~0.3	~0.2	~0.01	~0.01	

High temp.→high eff. & less water (flexible & suitable for adjusting the grid peaks)

sCO₂ Brayton is potential for next generation of CSP (compact, high efficiency)

□ High efficiency (Cycle efficiency >50% when TIT is higher than 700°C).
□ Compact (smaller than steam cycle).

Low water consumption.

sCO2 test loop at ZJU campus

Parameter	Value		
Mass flow rate	10~60 kg/h		
Working temperature	30~500 °С		
Working pressure	7~15 MPa		

- The purpose of this work: investigate the dynamic performance of sCO₂ test loop.
- Three input variables for the system: the mass flow rate, the working temperature and the working pressure.
- Used the experiment results to develop simulation model.

sCO2 test loop--System pictures

Experimental conditions

➤ Calculation method:

$$Nu = \frac{hd_{i}}{\lambda_{CO2}} \qquad t_{w,o} = \frac{(\sum_{j=1}^{10} t_{w,i} + \sum_{j=3}^{13} t_{w,i})}{2}$$
$$h = \frac{q}{LMTD} \qquad t_{w,i} = t_{w,o} + \frac{Q}{2\pi\lambda_{c}l} \ln \frac{d_{o}}{d_{i}}$$
$$LMTD = \frac{(t_{b,in} - t_{b,out})}{\ln (\frac{t_{b,in} - t_{w,i}}{t_{b,out} - t_{w,i}})} \qquad t_{b} = \frac{t_{b,in} + t_{b,out}}{2}$$

Items	CO ₂		
Flow direction	Horizontal		
Pressure	15MPa		
Mass flow rate	20-60 kg/h		
temperature	30~500 °C		
Heat flux q	0~60kW/m ²		
Reynolds number	2×10 ⁴ ~1.1×10 ⁵		

Effect of mass flux

■ As Q increases, the HTC increases too.

- Near the pseudo-critical temperature, heat transfer coefficient (HTC) reaches the peak point;
- For temperature >100°C, HTC is quite stable.

Effect of Pressure

The higher pressure resulted in the lower HTC peak;
 when T >100 °C, the effect of pressure is not significant.

Correlations comparison

Concluded correlation:

Data from: Bae Y-Y, Kim H-Y. Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel. Experimental Thermal and Fluid Science. 2009;33:329-39.

Simulation tool

Dymola-sCO₂ test loop model

Pump model and steady state validation

The maximum error of the mass flow rate is ±1.67%.
The maximum error for the outlet temperature is ±0.4%.

Pipe model

Steady state validation for components

Components	Cooler		Condenser		Test section	
	Pout	Tout	Pout	Tout	Pout	Tout
Maximum Error (± %)	0.1	0.3	0.1	0.5	1.6	0.2

Valve models

Back pressure valve

Pressure drop:

$$\Delta P_f = \frac{Q^2}{2\rho} K \qquad K = signal. 10^{12}$$

Control valve

Pressure drop:

$$\Delta PCv^{2} = K \frac{Q^{2}}{\rho^{2}} \qquad Cv = Cv_{max} signal$$

$$K=1.733 \times 10^{-12} \qquad Cvmax=8005.42$$

Conclusion

- ➤ The HTC reaches the peak value near the pseudo-critical temperature, but is stable when T> 100 °C.
- A new correlation is concluded for the working conditions in this test loop.
 It is used in the test loop simulation model to give a better prediction of HTC.
- ➤ The steady state validation for the main components have been done. The error between simulation and experiment results are ranged from ±0.1 % to ± 1.67%.

Future work

DMore comprehensive steady state validation.

- All components should be validated with more experiment results.
- More Experimental and simulation work on dynamic conditions.
 - Start-up and shut-down operations for the sCO_2 test loop.
 - Smart control strategies
- □ To Build a 150 kW sCO₂ Brayton test loop combined with a MWth solar tower built in Zhejiang University.

1MWth solar tower test platform

- \succ Solar thermal power: 1 MW_{th}
- ≻ Tower height: 40 m
- > Heliostats area: 2000 m^2 ($100*20\text{m}^2$)
- ➢ High temperature receiver > 900 °C
- ➤ Thermal storage > 800 °C
- ➢ Brayton cycle (air, sCO2)
- Stirling cycle
- PETE(photon enhanced thermionic emission)

MWth solar tower test platform

Thanks to EDF (China)

