

Effect of Impurities on Supercritical CO₂ Compatibility

B. A. Pint, K. A. Unocic and J. R. Keiser

Corrosion Science & Technology Group Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN 37831-6156 USA

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Acknowledgments

- J. Keiser, M. Howell, M. Stephens oxidation experiments
- T. Lowe SEM, image analysis
- T. Jordan metallography
- D. Coffey TEM specimen preparation
- Special thanks for alloys:
 - Haynes International
 - Special Metals
 - Sandvik
 - Capstone Turbine Corp.

Fossil/Solar focus on >700°C for high efficiency sCO_2

0.1

0.2

0-55

0-5

0-45

0.4

0.35

0-3-

1000

1100

1203

Cycle Efficiency

- Low critical point (31°C/7.4 MPa) High, liquid-like density Flexible, small turbomachinery

SAK RIDGE National Laboratory

••• 800H

••• 617

••• 230

- 740

- 625

800

850

282 (est.)

Feher, 1965 50% sCO₂ eff @ >720°C

Thermodynamics: Oxygen levels similar in steam/CO₂ Concern about high C activity at m-o interface

Factsage calculations

CAK RIDGE

High carbon activity at $P_{total} = 1$ bar (What is $P_{interface}$?)

General conclusion: internal carburization not an issue for Ni-based alloys

Supercritical CO₂ Allam cycle: first clean fossil energy?

NetPower 25MWe demo plant (Texas) Exelon, Toshiba, CB&I, 8Rivers Capital: \$140m

The prototype NET Power plant near Houston, Texas, is testing an emission-free technology designed to compete with conventional fossil power. CHICAGO BRIDGE & IRON

May 2018: announced first firing

Material challenges:

Combustor: 1150°C (!?!) Turbine exit: <u>750°C/300 bar</u> Combustion impurities: O₂, H₂O, SO₂

Moving forward with limited compatibility data! As audacious as Eddystone in 1960

Impurities differ in indirect- & direct-fired sCO₂ cycles (i.e. closed vs. open)

Closed cycle: "pure" CO₂ 100-300 bar

DOE SunShot 3 yr. funding Impurities: lower cost, industrial grade CO₂

Open cycle: sCO_2 + impurities (O_2 , H_2O ...)

DOE Fossil Energy 3 yr. funding Impurities: high levels from combustion residue

Two sCO₂ projects completed at ORNL

DOE Fossil Energy (2015-2018)

- 750°C/300 bar: 500-h cycles
- Focus on impurity effects for direct-fire
 - Baseline research grade (RG) CO₂
 - New autoclave with controlled O_2 + H_2O
- Alloys
 - 310HCbN (HR3C, Fe-base SS)
 - 617
 - 230
 - 247 (Al₂O₃-forming superalloy)
 - 282 (Heat #2)

DOE SunShot (CSP) (2015-2018)

- 750°C/300 bar: 500-h cycles
 - Including 750°C/1 bar, 10-h cycles
- Focus on industrial grade (IG) CO₂
 - Indirect fired (closed loop)
- Alloys
 - Alloy 25 (Fe-base SS Sanicro 25)
 - 625
 - 740
 - 282 (Heat #1)

- 740		FE/CSF	P FE	CSP	FE	CSP
		Air	RG CO ₂	IG CO ₂	$CO_2 + O_2 / H_2O$	CO ₂ +50/50 ppm
Combined test matrix:	1 bar	5,000 h	5,000 h	10,000 h		
CAK RIDGE	300 bar		5,000 h	10,000 h	5,000 h	2,500 h

Range of alloys have been evaluated

	Ni	Cr	Fe	Со	Refractories	Ti	Al	S	Other
Grade 91	0.1	8.3	90	0.01	0.9Mo,0.1Nb	< 0.01	<0.01	10	0.03Cu,0.3Mn,0.1Si,0.3V
304H	8.4	18	70	0.1	0.3Mo,0.01Nb	< 0.01	< 0.01	29	0.4Cu,1.6Mn,0.3Si,0.07N
25	25	22	43	1.5	3.5W,.5Nb,.2Mo	0.02	0.03	8	3.0Cu, 0.5Mn, 0.2Si, 0.2N
310HCbN	20	25	51	0.3	0.1Mo,0.4Nb	0.01	<0.01	<10	0.1Cu,1.2Mn,0.3Si,0.3N
230	61	23	2	0.1	1Mo, 12W	0.01	0.3	9	0.02La
625	61	22	4	0.1	9Mo, 4Nb	0.2	0.1	<10	0.2Si,0.1Mn,0.02C
617	54	22	1	13	9Mo, 1Nb	0.3	1.1	<3	
740	48	23	2	20	0.3Mo, 2Nb	2.0	0.8	<10	0.5Si,0.3Mn,0.03C
282	58	19	0.2	10	8Mo	2.2	1.5	<1	0.1Si,0.1Mn,0.06C
247	60	8	0.03	10	10W,3Ta,1Mo	1.1	5.3	<]	1.3Hf,0.14C

Compositions measured using ICP-OES and combustion analyses

CO₂ compatibility evaluated several ways at 700°-800°C

Autoclave: 300 bar sCO₂ 500-h cycles **Tube furnace: 1 bar CO₂ 500-h cycles**

Same cycle frequency as autoclave

Baseline: Box furnace: Lab. Air 500-h cycles

Previously: "Keiser" rig: 500-h cycles, 1-43 bar CO₂

Study impurities at 1-43 bar

Baseline of research grade (RG) CO_2 : $\leq 5 \text{ ppm H}_2O$ and $\leq 5 \text{ ppm O}_2$ industrial grade (IG) CO_2 : $18\pm16 \text{ ppm H}_2O$ and $\leq 32 \text{ ppm O}_2$

Correct temperature and pressure

4-5 cm² alloy coupons

Impurities (2015): 1atm, many alloys (1 of each)

800°C

SAK RIDGE

National Laboratory

Impurities (2017): fewer alloys (3 of each), 1 and 25 bar

Two alloy 230 reaction tubes:

Pressure: 1 and 25 bar

Gas: RG

RG CO₂ CO₂+10%H₂O CO₂+10%H₂O+0.1%SO₂

Pint, Brese, Keiser, NACE Corrosion 2018 C2018-11199

CSP: completed 10,000 h exposures for lifetime model

500-h cycles: three different environments

Quantification of scale thickness in three environments:

Pint, Keiser, NACE Corrosion 2019 C2019-12750

2016-2017: baseline performance in RG and IG sCO₂

Research grade (RG) CO_2 : $\leq 5 \text{ ppm H}_2O$ and $\leq 5 \text{ ppm O}_2$ Industrial grade (IG) CO_2 : $18\pm16 \text{ ppm H}_2O$ and $\leq 32 \text{ ppm O}_2$

2018: finally completed multi-pump 300 bar autoclave Closed cycle: low impurity levels showed no effect

CAK RIDGE

- Box: 3-4 specimens
 - Whiskers: min/max values
 - One specimen removed at 1 kh
- Lines: median values
 - 8-11 specimens in IG sCO₂
- Minor changes between:
 - IG sCO₂ (18±16 ppm H_2O , ≤ 32 ppm O_2)
 - RG sCO₂+50ppmO₂+50ppmH₂O
- Transient effect for Fe-based 25

2018: finally completed multi-pump 300 bar autoclave Closed cycle: low impurity levels showed no effect

CAK RIDGE

625: less complex reaction product than PS alloys 1,000 h at 750°C in 300 bar IG sCO_2

STEM BF image

EDS line maps

Solutional Laboratory

625: 1kh at 750°C in RG sCO₂+50ppmO₂/H₂O - similar oxide as IG sCO₂, consistent with mass change

STEM BF image

EDS maps

CAK RIDGE

Open cycle: clearly see an effect of higher impurities

Industrial grade (IG) CO_2 : 18±16 ppm H₂O and \leq 32 ppm O₂

Summary: high impurities resulted in higher mass gains

RG CO₂ + 1%O₂ + 0.25% H₂O

CAK RIDGE National Laboratory

Metallography generally consistent with mass change data

CAK RIDGE National Laboratory

Metallography generally consistent with mass change data

CAK RIDGE

625 (NiCr) 1000h STEM: unusually thick Cr-rich oxide layer

STEM annular dark field image

Scale thickness 3.70±44µm

1000 h at 750°C, 300 bar sCO₂+1%O₂+0.25%H₂O

SEM/EDS: Fe/Ni-rich oxide forming with impurities

1000 h at 750°C, 300 bar sCO₂+1%O₂+0.25%H₂O

GDOES: very different oxide forming on 25: (Fe-22Cr-25Ni)

1000 h at 750°C, 300 bar Glow discharge optical emission spectroscopy

WALK RIDGE Much more work to understand role of O₂, H₂O on sCO₂ compatibility

750°C materials available, what about lower temperatures? Measuring 25°C tensile properties suggests future strategy: Method to quantify degradation of steels at 450°-650°C (?)

Elongation:

Yield strength

Pint, et al., Materials and Corrosion 70 (2019) 1400

Backups

More complicated scale formed on alloy 282 specimen 1,000 h at 750°C in 300 bar sCO_2

STEM BF image

27

Summary: impurities caused a higher mass gain

28

RG CO₂ + 1%O₂ + 0.25% H₂O

Metallography consistent with mass change

29

CAK RIDGE

30

Success warrants continued work to answer more q's

- Complete characterization and publications in early 2019
 - Mount 5,000 h specimens, etching, TEM, EPMA, etc.
- New FWP to focus on:
 - Mechanistic understanding of O_2/H_2O effects with ¹⁸O/H₂¹⁸O tracers
 - Separate O_2 and H_2O effects
 - Focus on steels at lower temperatures: technology enabler
 - #1 question from industry is "where can I use T91?": cheaper and strong vs. fear
 - Provide input to alloy designers on effect of Cr/Ni in Fe-Cr-Ni alloys
 - Use 25mm tensile bars to assess sCO₂ effect on strength & ductility
 - Surface modifications to improve steel performance (as warranted)
 - Shot peening
 - Coatings
 - Creep assessment of thin-walled material at 750°C (282/740/etc.)

– Model lifetime as a function of temperature/HX dimensions/heat transfer

Project is concluding having achieved its goals

- Developed new experimental equipment for studying impurity effects on structural materials at up to 750°C/300 bar
- Results indicate that there is a negative effect of impurities, more so for Fe-based alloys than Ni-based alloys
- Room temperature tensile data suggests a simple route to quantify sCO₂ impact on mechanical properties of steels exposed at lower temperatures

Industrial collaborations

- All major US alloy manufacturers
- Conference calls conducted with HX, sCO₂ community (CSP project)
- Feedback from 8 Rivers/NetPower on impurity levels of interest
- Public presentations (TMS, MS&T, EFC workshop, NACE, EU sCO₂)