

A Systematic Comparison of Supercritical CO₂ Brayton Cycle Layouts for CSP with a Focus on Thermal Energy Storage Utilization

3rd European sCO₂ Conference

ZHANG Jinyi and LE MOULLEC Yann

EDF R&D China 2019/09/19

OUTLINE

A Systematic Comparison of Supercritical CO $_2$ Brayton Cycle Layouts for CSP with a Focus on Thermal Energy Storage Utilization

Introduction

Introduction

Supercritical CO₂ Cycle + CSP

- SCO₂, together with high temperature (> 500 °C) molten salt CSP solutions, could achieve higher efficiency than steam solutions.
- The size of CSP plant is between 50MWe and 150MWe, which is suitable for the first industrial demonstration of cycle.
- Recompression cycle is taken for a preliminary cycle dynamics study, because this is the most studied layout with a good balance between complexity and efficiency.

Introduction

Supercritical CO₂ Cycle + CSP

A Systematic Comparison of Supercritical CO2 Brayton Cycle Layouts for CSP with a Focus on Thermal Energy Storage Utilization

Optimization of sCO₂ cycles

sCO₂ cycles

A Systematic Comparison of Supercritical CO2 Brayton Cycle Layouts for CSP with a Focus on Thermal Energy Storage Utilization

Optimization of sCO₂ cycles

Modeling

- A zero-dimension model based on energy balance equation
- Model including turbine, compressor and heat exchangers
- Three indicators of cycle performance

cycle efficiency η

TES utilization ratio T

specific power output w

$$\eta = \frac{\sum W_{turbine} - \sum W_{compressor}}{\sum Q_{in}} \qquad w = \frac{P \cdot t_{storage}}{m_{storage}} \qquad \tau = \frac{T_{upper}^{MS} - T_{lower}^{MS}}{T_{max}^{MS} - T_{min}^{MS}}$$

Parameters	Unit	Value
Maximum molten salt temperature, T_{max}^{MS}	°C	565
Minimum molten salt temperature, T_{min}^{MS}	°C	290
Maximum pressure, p_{max}	MPa	25
Main compressor inlet temperature, T_{MCI}	°C	35
Pre-compressor inlet temperature, T_{PCI}	°C	35
Compressor isentropic efficiency, η_{cmp}	%	89
Turbine isentropic efficiency, η_{tb}	%	93
Molten salt/CO ₂ heat exchanger minimum	°C	5
internal pinch, $\Delta T_{min}^{MS/CO2}$		
CO ₂ /CO ₂ heat exchanger minimum internal	°C	5
pinch, $\Delta T_{min}^{CO2/CO2}$		
Molten salt $/CO_2$ heat exchanger pressure drop	MPa	0.1
(CO ₂ side), $\Delta p^{MS/CO2}$		
CO_2 / CO_2 heat exchanger pressure drop,	MPa	0.1
$\Delta p^{co2/co2}$		

Optimization of sCO₂ cycles

Optimization of the cycle

A Systematic Comparison of Supercritical CO2 Brayton Cycle Layouts for CSP with a Focus on Thermal Energy Storage Utilization

Effect of TES utilization ratio for fundamental cycles

A Systematic Comparison of Supercritical CO2 Brayton Cycle Layouts for CSP with a Focus on Thermal Energy Storage Utilization

Effect of TES utilization ratio on TIT

For high TES utilization level, TIT does not reach its upper limit to have the best cycle efficiency

To keep both high TIT and TES utilization ratio

Effect of TES utilization ratio on cycle efficiency for cycle characteristics

More evident improvement for RG and PC cycles

A Systematic Comparison of Supercritical CO2 Brayton Cycle Layouts for CSP with a Focus on Thermal Energy Storage Utilization

Effect of TES utilization ratio on cycle efficiency

TES utilization ratio	Cycle with highest efficiency
100% – 93%	PartC-PH
93% - 75%	PartC-IC
75% - 49%	RC-IC
< 49%	RC-RH

RC starts to dominate at 50% TES utilization ratio ↓ Two times molten salt and bigger storage tank needed

compared with 100% TES utilization ratio

Effect of TES utilization ratio on cycle efficiency (2)

Cycle configuration	PartC - PH	PartC - IC	RC - IC
TES utilization ratio (%)	100	85.45	63.64
Cycle efficiency	43.11	45.64	48.21
тіт (°С)	503.98	542.3	560
Cycle minimum pressure (MPa)	63.57	53.77	80.06
Specific power output (kJ/kg MS)	179.78	163.02	128.66

A Systematic Comparison of Supercritical CO2 Brayton Cycle Layouts for CSP with a Focus on Thermal Energy Storage Utilization

Conclusion

Conclusions

□ Effect of TES utilization ratio for CSP with sCO₂ power cycles

It is favorable to use higher-temperature molten salt

Lower TES utilization ratio helps reach higher cycle efficiency but will reduce specific power output

For high TES utilization ratio, it is not always optimal for TIT to reach its upper limit

Cycle with highest efficiency at different TES utilization ratio was listed

□ TES utilization is an important factor when integrating sCO₂ with CSP

Perspectives

Study on higher molten salt temperature More complex combination of cycle characteristics

A Systematic Comparison of Supercritical CO2 Brayton Cycle Layouts for CSP with a Focus on Thermal Energy Storage Utilization

Questions?