

HYBRIDIZATION OF A SMALL MODULAR REACTOR WITH A SOLAR POWER PLANT USING A SUPERCRITICAL CARBON DIOXIDE BRAYTON CYCLE

Q.T. Pham, N. Tauveron, N. Alpy

DE LA RECHERCHE À L'INDUSTRIE

3rd European Conference on Supercritical CO2 (sCO2) Power Systems, Paris, FRANCE 19 – 20 September, 2019 V. Vuillerme

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Summary

1. Context

- Small Modular Nuclear Reactors (SMR)
- Solar power and existing solar power plant technology
- Concept of nuclear-solar coupling in a hybrid power system
- - ✤ Reference case
- 3. Nuclear-solar hybridization at high temperature using sCO2 cycle
- 4. Nuclear-solar hybridization at low temperature using sCO2 cycle
- 5. Conclusions & Perspectives

* Context

- ✓ A state of advanced development of Small Modular nuclear Reactor (SMR) worldwide
- ✓ The deployment of solar power plants (Photovoltaic or Concentrating Solar Power)
- ✓ The attractiveness of hybridization and integration of Thermal Energy Storage systems (TES)
- ***** Objective of SMR Solar Power Plant TES hybridization
- ✓ Provide climate-friendly decarbonized electricity
- ✓ Use the solar source to **boost** both **production and efficiency** of the hybrid power plants (also possibly as source for auxiliary circuits of the SMR)
- \checkmark Integration of technologies to ensure scaleability and **flexibility**

* Nuclear technologies in SMR

- ✓ Light water reactors (ex: NuScale USA, SMART Korea, etc ...)
- ✓ High temperature gas cooled reactors (ex: GTHTR300 Japan, MHR-100 - Russia, etc ...)
- ✓ Liquid metal (Sodium/Lead-bismuth) cooled fast reactors (ex: PRISM USA, BREST-300-Russia, etc ...)
- ✓ Molten salt thorium reactors (ex: IMSR-Canada, etc ...)

√ etc ...

Present study

 \checkmark Similar design to the classical water cooled nuclear reactor

 \checkmark Smaller size to be built in factories and shipped for installation

Small Modular Reactors

* Technological advantages

- ✓ Non CO2 energy solution
- \checkmark Short construction duration
- ✓ Enhanced reliability
- ✓ Possibly enhanced safety due to passive safety
- ✓ Reduced complexity in design and human factor
- ✓ Suitability for non-electricity application

* Non-technological advantages

- ✓ Suitability for small electricity grids
- ✓ Option to match demande growth by incremental capacity increase
- \checkmark Lower capital cost
- ✓ Small reactor can minimize terrorism risk
- \checkmark Easier financing scheme

200 ft	NuScale's combined containment vessel		Large nuclear reactors	Small modular reactors
a	and reactor system	Power	800 – 1600 MWe	< 300MWe
	76 n T	Construction time	4,5 – 6 years	1,5 – 2,5 years
120 ft				

Cea

Solar Power Plants

Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV), indirectly using concentrated solar power (CSP), or a combination. Therefore, SPP must be situated in regions with suitable solar resources (strong and abundant sunlight)

Current status of CSP Commercial Projects

Commissariat à l'énergie atomique et aux énergies alternatives

Q.T. Pham , N. Tauveron , N. Alpy

```
cea
```

CSP key competitive advantages

- ✓ Produce clean environmentally friendly electricity without emission of CO2
- \checkmark Renewable and free fuel cost
- \checkmark Low operating and maintenance costs
- ✓ Solar power plants equipped with TES allows continuous generation of electricity
- ✓ Multiple Applications: generation of heat and electricity, water desalination...
- ✓ Use of many of the same technologies and equipments used by conventional power plants, which allows a minimizing of design and construction costs

CSP issues

- ✓ Limited market
- \checkmark Requirement of large area for sunlight collectors
- ✓ High investment cost

Challenges for Nuclear Power Plants

✓ <u>Generally, NPPs are more economic when operated at high and constant</u> power levels, sometimes leading to surplus of production

 \rightarrow Needs for a subsystem to consume the excess nuclear heat to adapt the electricity supply to variation of power demand \rightarrow can be a TES

✓ <u>Current operating NPPs produce saturated steam at relatively low</u> <u>pressure</u>

 \rightarrow Possibility to increase the steam temperature at the outlet of steam generator to improve the efficiency of the NPPs?

***** Challenge for Solar Power Plants

- ✓ <u>Variability of the resource</u>, which requires an highly flexible grid to meet the remaining electric demand.
- \rightarrow Integration of TES helps solar power plants to overcome this drawback

Challenge for All kind of Power Plant

✓ <u>Need for a flexible system, able to adapt its production to electric demand.</u>

Nuclear-Solar-TES hybrid energy system

Commissariat à l'énergie atomique et aux énergies alternatives

Cea

SMR-solar-TES hybridization

Conceptual design and preliminary performance analysis of a hybrid nuclear-solar power system with molten-salt packed-bed thermal energy storage for on-demand power supply, Energy Conversion and Management 166 (2018) 174–186, Bing-chen Zhao, Mao-song Chenga, Chang Liu, Zhi-min Daj

SMR-parabolic through solar-TES hybridization (NPP-PT)

Innovative configuration of a hybrid nuclear-parabolic trough solar power plant, International Journal of sustainable energy, 2017, pp. 1-24 Popov et Borisova

Q.T. Pham , N. Tauveron , N. Alpy

An option for the integration of solar photovoltaics into small nuclear power plant with thermal energy storage, Suistainable Energy Technologies and Assessments, Vol. 18, 2016, pp. 119-126 Popov et Borisova

SMR-solar tower-TES hybridization (NSPP)

SMR-Solar-TES hybridization (reference)

43911

27.45

Commissariat à l'énergie atomique et aux énergies alternatives

Net electric power [kWe]

Thermal efficiency [%]

Q.T. Pham, N. Tauveron, N. Alpy

69302

33.17

77970

36.12

91833

37.47

+10 pt !

Influence of solar share on NSPP efficency

Compare of NSPP and NPP with EES software

Case 2: NPP, $T_{inlet,turbin} = T_{outlet,steam_generator}$						
T _{inlet,turbin}	Nuclear power	Used solar power	Thermal efficiency	Note		
°C	%	%	%			
255	100	0	27.45	Neither reheating nor superheating		

Case 1: NSPP coupling, T _{inlet,turbin} = T _{outlet,reheat} = T _{outlet,superheat}					
T _{inlet,turbin}	Nuclear power	Used solar power	Thermal efficiency	Note	
°C	%	%	%		
555	100	99.13	37.47		
500	100	86.36	36.28	Solar energy serves for both reheating and	
455	100	76	35.3	superheating	
355	100	53.07	33.05		
255	100	30.69	31.03	No superheating, solar energy serves for reheating only	

Potential application of SCO2 Brayton cycle for NSPP

Q.T. Pham , N. Tauveron , N. Alpy

SCO₂ Brayton recompression cycle for SMR

Imposed conditions:

- $P_{max} = 20MPa$
- $T_{in,compressor}$ = Tambiant = 27°C (summer case)
- $E_{turbine} = 93 \%$
- $E_{compressor} = 89 \%$
- $E_{recuperator} = 95 \%$

2 pt efficiency improvent obtained with SCO2 Brayton cycle instead of Rankine cycle

cea

High temperature hybrid plant with <u>single</u> SCO₂ Brayton recompression cycle

Summer				
% used	Pmin	Split ratio	T _{inlet,turbine}	Efficiency (%)
Sulai IIcat				
0	8	0.6485	255	29.49
20	7	0.6435	267.6	29.7
50	6.8	0.7265	286.8	30.37
80	6.8	0.8189	306.1	30.84
100	6.8	0.8811	319.1	31.08

Winter

% used	Pmin	Split ratio	T _{inlet,turbine}	Efficiency (%)
solar neat				
0	7.6	0.5465	255	28.72
20	7	0.6178	267.6	31.78
50	5.8	0.6224	286.8	32.49
80	5.8	0.7	306.1	33.1
100	5.8	0.7522	319.1	33.39

- SMR constraints (T_{in} , T_{out}) & serial configuration \rightarrow T_{in} @ turbine limited
- sCO2 recompression cycle: 1 parameter to optimize (split ratio)

Lower thermal efficiency obtained with SCO2 Brayton recompression in comparison to Rankine cycle

High temperature hybrid plant with <u>cascaded</u> SCO₂ Brayton recompression cycle

Low temperature hybrid plant with SCO2 Brayton recompression cycle

✤An alternative to high temperature configuration based on technologies developed for industrial processes and district heating :

Low-temperature solar heat generation

O. HOOGLAND, E. VEENSTRA, P. TORRES, I. IPARRAGUIRRE TORRES, H. KUITTINEN "Study on impacts of EU actions supporting the development of renewable energy technologies", Ref: 2017/RTD/SC/PP-05441-2017, 2018.

Large scale/District Heating Multiple

Industrial process heat Heating and cooling

◆ Low temperature heat storage

H. BINDRA, S. REVANKAR "Storage and Hybridization of Nuclear Energy, Techno-economic Integration of Renewable and Nuclear Energy", Elsevier, 2019.

Q.T. Pham, N. Tauveron, N. Alpy

Cea

Low temperature hybrid plant with SCO2 Brayton recompression cycle

Q.T. Pham, N. Tauveron, N. Alpy

Proposal of two configurations for nuclear-solar hybrid power plant operating at high and low temperatures in which SCO2 Brayton cycle is employed for the power block

***Up to 10 pt** efficiency improvement obtained for high temperature hybrid configuration

With the low temperature hybrid configuration, about 2 to 5 pt efficiency enhancement could be achieved but other potential economical advantages are of interest

Next future: to develop model for hybrid plant operating strategy

Next steps

Application of operating model for different locations & conditions & markets (power, heat, cold, ...)

☆Replacement of LWR by other advanced concept of nuclear reactors in the NSPP → sCO2 remains interesting for all concepts

Reactor type	Coolant	Neutron spectrum	Peak temperature
SFR	Na	Fast	550°C
LFR	Pb-Bi	Fast	550-800°C
GFR-indirect	He	Fast	850°C
GFR-direct	CO2	Fast	650°C
LWR	H ₂ O	Thermal	300 °C
VHTR	He	Thermal	1000 °C
MSR	Fluoride salt	Fast/ thermal	700–1000 °C

[Conboy et al., 2015]

Selection of **TES technologies** adapted to NSPP temperature

Technico-economic analysis

Commissariat à l'énergie atomique et aux énergies alternatives

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr