

University of Stuttgart

Institute of Nuclear Technology and Energy Systems

Investigation of a correlation based model for sCO₂ compact heat exchangers

M. Hofer, M.Buck, M. Strätz, J. Starflinger

KE

3rd European sCO2 Conference, Paris, 19.09.2019

Outline

- 1. Introduction
- 2. Compact heat exchanger (CHX)
 - i. Experiments
 - ii. Modelling approach
 - iii. Results
- 3. Conclusion and future work

Introduction (1): Overview and motivation

- Motivation
 - Fukushima
 - Scientific Trend: new heat removal systems
- Active Heat Removal System with Turbo-Compressor
 - sCO₂ as a working fluid
 - Air as ultimate heat sink
 - Self-propelling
 - Very compact

Source: Sandia National Labs.

Introduction (2): State of the Art

Source: J. Venker, IKE

Introduction (3): Overall Objective

- Enable ATHLET to simulate sCO₂-Brayton-Cycles and their interaction with existing or future BWR, PWR, VVER, etc. for safety analyses
 - ATHLET code extensions (including models for CHX)
 - Validation experiments
 - NPP simulations
- ATHLET
 - Analysis of THermal-hydraulics of LEaks and Transients
 - Nuclear safety analysis
 - Thermal-hydraulic system code
 - Modular code structure
 - Developed and improved by GRS and in various research projects

Introduction (4): Glass Model with sCO₂-HeRo-System

Introduction (5): CHX of the sCO₂-HeRo-System

Source: M. Strätz, IKE

CHX (1): Experiments

- SCARLETT test facility
- 2-Plate CHX (H₂O/CO₂)
- High Δp_{plenum}
 (inlet/outlet: perpendicular)
- Non uniform temperature distribution over the channel perimeter

CHX (2): Representative channel model

- Only one representative channel pair is modelled
- Correlations for heat transfer coefficients and pressure drop (sCO₂: Gnielinski and Colebrook)
- Inlet and outlet $\Delta p_{plenum} = \xi_{Form} \dot{m}^2/(2\rho)$

CHX (3): Heat conduction

- Cross section of real configuration (2-D Heat conduction)
- Model in ATHLET (1-D plate heat conduction)
- Plate width and effective thickness must be determined

CHX (4): Heat conduction

- $R_{real} = \frac{T_{h,w} T_{c,w}}{\dot{o}}$ (real configuration)
- T and \dot{Q} from 2-D heat conduction calculation

•
$$R_{plate} = \frac{\delta}{\lambda w \Delta l}$$
 (ATHLET)

- 2 unknowns: δ and w
- Additional constraint: steel mass in ATHLET should be equal to the real configuration (same transient behaviour)

•
$$m_{steel} = V_{steel}\rho_{steel} = \delta w \Delta l N_{sub}\rho_{steel}$$

• δ and w can be determined

CHX (5): Validation results

CHX (6): Validation results

CHX (7): Validation results

CHX (8): Scaling for reactor simulations

- Representative channel model with "small" number of subvolumes (applicable for co-current and counter-current flow)
- Plenum form loss coefficients ξ_{Form} derived from experiments
- *R* and *w*, δ can be derived from the 2-D heat conduction calculation
- "Natural" scaling as long as assumptions hold
 - By numbering (higher number of channels)
 - By adapting the channel length of the CHX
 - Conservative assumption: $\xi_{NPP} = \xi_{experiment}$
 - In reality lower Δp_{plenum} due to optimised geometry of large scale CHX
 - R and w, δ can be recalculated with the 2-D heat conduction calculation

Conclusion and future work

- Counter-current-flow CHX
 - Representative channel model
 - Validation: good agreement between experiments and simulation
- Future Work
 - Cross-flow CHX modelling
 - Turbomachinery modelling
 - Validation with further experiments (different operating conditions, condensing, closer to the critical point)
 - Simulation of the sCO₂-HeRo-System
 - Glass model
 - Nuclear power plant scale

The presented work is funded by the **German Ministry for** Economic Affairs and Energy (BMWi. Project no. 1501557) on basis of a decision by the German Bundestag.

Federal Ministry for Economic Affairs and Energy

University of Stuttgart Institute of Nuclear Technology and Energy Systems

Thank you!

Markus Hofer

e-mail markus.hofer@ike.uni-stuttgart.de phone +49 (0) 711 685-60855 fax +49 (0) 711 685-62010

University of Stuttgart Institut für Kernenergetik und Energiesysteme Pfaffenwaldring 31 • 70569 Stuttgart