

Universität Stuttgart Institut für Kernenergetik und Energiesysteme

Outline

- 1. Introduction
- 2. Direct Numerical Simulation
- 3. Development of a Practical Calculation Method
- 4. Application to the sCO₂ Cooler
- 5. Conclusions

sCO₂-Recuperative Brayton-Cycle

'Advanced Design' of the MIT-Study by Dostal et al. (2004)

Universität Stuttgart – Institut für Kernenergetik und Energiesysteme

Compact Heat Exchanger (sCO₂-Cooler of a Brayton Cycle) Consisting of a stack of plates with machined 1x2 mm channels

University of Stuttgart - Institute of Nuclear Technology and Energy Systems

University of Stuttgart - Institute of Nuclear Technology and Energy Systems

2017.12.11 6

Properties of supercritical CO₂ vs. enthalpy h

at various pressures in MPa (after NIST)

Universität Stuttgart – Institut für Kernenergetik und Energiesysteme

^{08.10.2019 7}

Empirical Nusselt-Correlatios

for Pipe Flow with variable properties, no boyancy

Name	Math. Expression
Krasnoshchekov, Protopopov, Kureva (1969)*	$Nu_{w} = \frac{f/8\operatorname{Re}_{b}\operatorname{Pr}_{b}}{1.07 + 12.7\sqrt{f/8}\left(\operatorname{Pr}_{b}^{2/3} - 1\right)} \left(\frac{\rho_{w}}{\rho_{b}}\right)^{n} \left(\frac{\overline{c}_{p}}{c_{p,w}}\right)^{m} ; n = 0.38 ; m = 0.75 \left(\frac{\overline{c}_{p}}{c_{p,w}}\right)^{0.18}$
Baskov-Protopopov- Kureva (1977)*	$Nu_{w} = \frac{f/8 \operatorname{Re}_{b} \operatorname{Pr}_{b}}{1.07 + 12.7 \sqrt{f/8} \left(\operatorname{Pr}_{b}^{2/3} - 1 \right)} \left(\frac{\rho_{w}}{\rho_{b}} \right)^{n} \left(\frac{\overline{c}_{p}}{c_{p,w}} \right)^{m} ; n = 0.15 ; m = 1.4$
Pitla et al.(2002)*	$Nu_{b} = \left(\frac{Nu'_{w} + Nu'_{b}}{2}\right) \frac{\lambda_{w}}{\lambda_{b}}; Nu'_{w,b} = \frac{(f_{w,b} / 8)(\operatorname{Re}_{w,b} - 1000)\operatorname{Pr}_{w,b}}{1 + 12.7\sqrt{f_{w,b} / 8}\left(\operatorname{Pr}_{w,b}^{2/3} - 1\right)}; f_{w,b} = (1.82\log\operatorname{Re}_{w,b} - 1.64)^{-2}$
Mokry and Pioro (2010)	$Nu_b = 0.0121 \operatorname{Re}_b^{0.86} \overline{\operatorname{Pr}}^{0.23} \left(\frac{\rho_w}{\rho_b}\right)^{0.59}$
Bringer-Smith (1957)*	$Nu_b = 0.0375 \text{ Re}_b^{0.77} \text{ Pr}_w^{0.55}$
Jackson (2013)	$Nu_b = 0.023 \text{ Re}_b^{0.8} \text{ Pr}_b^{0.3} \left(\frac{\rho_w}{\rho_b}\right)^{0.3}$

*L.F. Cabeza, A. de Garcia, A. I. Fernandez, M.M. Farid: Supercritical CO₂ a Heat Transfer Fluid: A Review, Applied Thermal Engineering 125, 799-810 (2017) 08.10.2019 8

Appliocatio of epirical Nusselt-correlations to the cooler

L.F. Cabeza, A. de Garcia, A. I. Fernandez, M.M. Farid: Supercritical CO₂ a heat transfer fluid: A review, Applied Thermal Engineering 125, 799-810 (2017)

Universität Stuttgart – Institut für Kernenergetik und Energiesysteme

Aim of this Work

- Perform DNS for Cooled Pipes
- Understand the Physical Behaviour of Flow Turbulence
- Derive a Practical Heat-Transfer Prediction Method
- Compare to Nusselt Correlations

Direct Numerical Simulation (DNS)

Integration of the fundamental Navier-Stokes Equations

University of Stuttgart – Institute of Nuclear Technology and Energy Systems

2017.12.11 12

Numerical Method : OpenFOAM v 5.0

Low-Mach Number Navier-Stokes Equations (no disadvantage compared to fully compressible flow*)

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \frac{\partial \left(\rho u_{j}\right)}{\partial x_{j}} &= 0\\ \frac{\partial \left(\rho u_{i}\right)}{\partial t} + \frac{\partial \left(\rho u_{i} u_{j}\right)}{\partial x_{j}} &= \rho g_{i} e_{ax} - \frac{\partial p}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} - \frac{2}{3} \delta_{ij} \frac{\partial u_{k}}{\partial x_{k}}\right) \\ \frac{\partial \left(\rho h\right)}{\partial t} + \frac{\partial \left(\rho u_{j} h\right)}{\partial x_{j}} &= \frac{\partial}{\partial x_{j}} \lambda \frac{\partial T}{\partial x_{j}} \\ \rho &= \rho(h); \lambda = \lambda(h); \mu = \mu(h); T = T(h) \end{aligned}$$

- properties fitted by spline functions to NIST
- Semi-implicit coupling of pressure and velocity (PISO)
- 2nd order accuracy in space and time

University of Stuttgart - Institute of Nuclear Technology and Energy Systems

^{*}F. Föll, S. Pandey, X. Chu, C.-D. Munz, E. Laurien, B. Weigand, "High-fidelity direct numerical simulation of supercritical channel flow using discontinuous Galerkin spectral element method", Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2018, **Springer International Publishing**, 2018

Instantaneous velocity field, wall heated

University of Stuttgart – Institute of Nuclear Technology and Energy Systems

Instantaneous velocity field, wall heated

University of Stuttgart – Institute of Nuclear Technology and Energy Systems

Near-Wall Turbulence Structures

- Overall flow deceleration along the streamwise direction
- Transformation into 'M' shape velocity profile for downward flow

Presentation of the Computes Wall Temperature

University of Stuttgart – Institute of Nuclear Technology and Energy Systems

2017.12.11 18

Universität Stuttgart – Institut für Kernenergetik und Energiesysteme

Universität Stuttgart – Institut für Kernenergetik und Energiesysteme

Piecewise Linear Interpolation Formulas for q_w at h = const

University of Stuttgart - Institute of Nuclear Technology and Energy Systems

2017.12.11 22

Interpolation of DNS Results for Wall Cooling 80 bar, D = 2 mm

Distribution of the wall heat flux with given wall temperature T_w

Universität Stuttgart – Institut für Kernenergetik und Energiesysteme

sCO₂-Recuperativer Joule(Brayton)-Zyklus

'Advanced Design' of the MIT-Studie by Dostal et al. (2004)

Universität Stuttgart – Institut für Kernenergetik und Energiesysteme

Wann spielt Auftrieb eine Rolle ?

bei unterschiedlichen Massenstömen G [kg/m²s]

Universität Stuttgart – Institut für Kernenergetik und Energiesysteme

Vergleich der Korrelationen und der DNS mit unterschiedlichen Massenstromdichten G Kühler, 8 MPa

Universität Stuttgart – Institut für Kernenergetik und Energiesysteme

Compare Directly to Correlations

here: forced convection (no gravity), cooling

Authors	year	n
Bringer & Smith	1957	0.77
Yoon et al.	2003	0.69
Son and Park	2006	0.55
Oh and Son	2010	0.7
Jackson	2002	0.82
Huai and Koyama	2007	0.8
Lee et al.	2013	0.56
Saltanov	2015	0.823
Simoes et al.	2008	0.8

$$\mathrm{Nu}_{b} = \frac{q_{w} D}{\left(T_{b} - T_{w}\right)\lambda_{b}} = C \operatorname{Re}_{b}^{n} \operatorname{Pr}_{b}^{m} \left(\frac{\rho_{b}}{\rho_{w}}\right)^{p} \left(\frac{\mu_{b}}{\mu_{w}}\right)^{s}$$

University of Stuttgart - Institute of Nuclear Technology and Energy Systems

2017.12.11 29

Minimum Cooler Length L 8 MPa T_w = 283 K

$$L = \frac{G \cdot D}{4} \int_{h_{in}}^{h_{out}} \frac{1}{q_w} dh$$

Conclusions

- new DNS data for the enthalpy-region of the cooler available
- physical mechanisms of turbulence identified
- correlation method for G = 53.8 kg/m2s derived (up, down, forced)
- first attempt for scaling to larger G for forced convection
- work is important to reduce scatter in prediction methods (e.g. for the minimum cooler length)

Universität Stuttgart Institute of Nuclear Technology and Energy Systems

Thank you for your attention!

Eckart Laurien

E-Mail laurien@ike.uni-stuttgart.de Telefon +49 (0) 711 685- 62415 Fax +49 (0) 711 685- 62010

Universität Stuttgart Institute of Nuclear Technology and Energy **Praten** aldring 31, 70569, Stuttgart

