Commercialization of Supercritical CO₂ (sCO₂) Power Cycles

Timothy J. Held

Chief Technology Officer

Echogen Power Systems

Founded 2007

Mission:

Commercialization of sCO₂ power cycles

Designed, fabricated and tested only MW-scale sCO₂ power cycle

Echogen leads the industry in sCO₂ power cycle development

Commercialization of sCO₂ power cycles

- Challenges and obstacles
 - Reluctance to assume risk of a new technology
 - First-of-a-kind costs vs 100-year-old technology
 - Current low energy costs unfavorable to investment in efficiency
 - Fear of the unknown...

Commercialization of sCO₂ power cycles

G

- Opportunities and value proposition
 - Higher efficiency at lower cost (or some combination thereof)
 - Physical size / footprint
 - Startup and turndown capability
 - Air-cooled = zero water power plant
 - O&M cost
 - Reliability & availability

The application space

HR vs non-HR cycles

- Heat recovery cycle
 - GT exhaust is a classic example
 - Heat source is non-recycled any heat not recovered by the power cycle is lost
 - Primary metric is power output for a given application
 - Goal is to maximize both recovered heat and recuperated heat simultaneously

HR vs non-HR cycles

- "non-Heat recovery" cycle (a.k.a. "recompression" cycle)
 - Advanced nuclear power is a classic example
 - Heat source is fully recycled
 - Primary metric is efficiency
 - Goal is to approximate a Carnot cycle heat addition at very small temperature differential
 - "In-between" applications e.g. CSP with thermal storage

Simple recuperated cycle – somewhere in the middle ground

Minimum temperature in primary HX too high for heat recovery, too low for good Carnot efficiency

Recuperator characteristics

- Simple recuperated cycle recuperator "pinches" at low-temperature end
- Consequence of large c_p mismatch between high-pressure and low-pressure CO_2 , equal mass flows
- Large exergy destruction with temperature glide mismatch

"Recompression" (LT recup bypass) cycle maximizes avg PHX temperature

Recuperator characteristics

- Cycle optimization drives C_r (C_{min}/C_{max}) toward 1
- Equal slope minimizes exergy destruction
- However, equal slope also implies large UA

Heat recovery cycle

- "Dual rail" cycle
 - Patent pending
 - Sequence of heat additions via "recuperation rail" and "primary heat exchanger rail"
- Key characteristics:
 - Primary heat transfer over a wide range of temperatures
 - Variable flow splits as progress down primary heat exchanger, matches mc_p of exhaust stream
 - Dual turbines

Dual rail cycle maximizes combined utilization of external and internal (recuperated) heat

Heat recovery primary heat exchanger

Optimization drives flow splits and heat exchanger UAs towards equal temperature glide

Cycle / cost modeling

- Optimization process defines cycle with minimum cost for given power output
- Multiple solutions generates curves of cost vs power
- Allows selection of optimal cycle architecture

Continued sCO₂ Cycle Improvements

- Comparison of sCO₂ cycles
 - EPS100 (patents pending)
 - Dual Rail (patents pending)
- Current design of EPS100 at 7.3 MW net
- Dual rail cycle offers substantial improvement in performance, outperforms steam at a lower cost

Echogen sCO₂ = lower CAPEX & lower Levelized Cost of Electricity

sCO₂ vs steam – GTCC applications

- Normalized to steam power & cost from GT-Pro, "power-optimized" solutions ("cost-optimized" point shown for reference)
- Same exhaust and boundary conditions used for sCO₂
- 10-20% lower cost for same power
- 7-14% higher power for same cost

LCOE – GTCC applications

- Case studies covering 30-800+MW
- Bottoming cycle LCOE consistently lower with sCO₂

Primary power applications

- EPRI-led oxy-coal sCO₂ integration study
- Comparisons to baseline steam cases

sCO2 – Steam Power Cycle Comparison

Purpose / Goals:

Develop power plant process designs that optimally integrate sCO₂ power cycles with oxy-fired coal heaters for comparison to advanced steam cycles

Method

- Performance optimization of sCO₂ cycles
- Varied cycle architectures, cooling sources, power cycle heat exchanger sizes and pressure drops

Approach

- System economics within sCO₂ cycle also optimized
 - Heat exchanger cost sensitive to thermal size "UA" and pressure drop.
 - Optimize sCO₂ cycle heat exchanger cost (recuperators and coolers) versus net cycle efficiency
- Combinations and variants of cascade and recompression cycles including architectures with multiple compression steps and reheat were considered

sCO₂ Power Cycle - Effect of Air Preheater Inlet Temperature

550 MW – Effects of Air Preheat Inlet Temp Case 1:

Result:

- Positive effect of air preheater inlet air temperature on cycle efficiency is limited by recuperation of sCO₂ cycle.
- For lower temperature application ($T_4 = 593$ °C)
 - Increasing air preheater inlet temperature above 427°C has little effect on cycle efficiency
- With the addition of low grade heat recovery cycle optimum cycle efficiencies can be achieved with lower air preheat inlet temperature (371°C)

Recompression Cycle:

Recompression Cycle – LG Heat Recovery

Echogen Power Systems

Steam – sCO₂ Power Cycle Comparison Summary

Test Case	Power Turbine Inlet Condition	Net Gen (MW _e)	Gross Gen (Mwe)	Cycle Heat Input (MW _{th}) / Heater Efficiency	Net sCO2 Plant Efficienc y (HHV)	sCO2 Cycle Efficiency	Baseline Steam Net Plant Efficiency	Baseline Steam Cycle Efficiency
1	593°C / 241 bar	550	736.2	1407 / 88.3%	34.5%	52.3%	31.0%	47.0%
2	730°C / 27.6 bar	550	713.4	1295 / 88.3%	37.5%	57.2%	35.0%	50.6%
3	593°C / 241 bar	550	651.2	1286 / 90%	38.5%	50.6%	35.8%	46.9%
4	730°C / 27.6 bar	550	640.5	1151 / 90%	43.0%	55.6%	41.0%	52.3%
5	593°C / 241 bar	90	101.0	210 / 85.1%	36.5%	48.1%	33.0% (538°C/107 bar no reheat, no CO2 capture)	38.8%
6	730°C / 27.6 bar	90	99.2	186 / 85.1%	41.0%	53.1%		

- Test Case 1 − 2 − Integration with Oxy-fired Pulverized Coal Heater
- Test Case 3 4 Integration with Oxy-fired Chemical Looping Heater
- Test Case 5 6 Integration with Air-fired Pulverized Coal Heater

EPS100

First commercial-scale sCO₂ heat engine

Description and test results

The EPS100

- Designed for 25 MW Aeroderivative GTs
 - GE LM2500PE/PJ
 - R-R RB211 C62
 - Solar Titan 250
 - 8.0 MW gross
 - 7.3 MW net

- Process skid (right)
- Power skid (above)
- Control house
- CO₂ storage tank and transfer system
- Cooling system (air or water)

GTs = Gas Turbines

Operational summary – typical test day

- Maximum power = 3.1 MWe limited by heat source and water temperatures
- Run terminated by load bank fault. System tripped automatically and safely

A typical test day (compressed to 3 minutes)

G

Play video from file

Overall heat balance

Turbomachinery Validation

- Power turbine and turbocompressor efficiencies demonstrate excellent agreement with reference curve derived by NASA
- Turbocompressor test data represent operation near full power
- Power turbine data represent significantly off-design conditions of the test cycle configuration. At full power conditions efficiency is expected to be similar to turbocompressor

Turbine performance vs NASA TP-1730 curve. Note that TP-1730 curve ends at approximately Ut/C0=0.9.

Steady-state cycle model validation

- Detailed cycle model
- Includes off-design component performance submodels
- Inputs:
 - Compressor inlet and outlet pressures
 - Heat source temperature & flow
 - Cooling water temperature and flow
 - PT speed
- Outputs:
 - TP speed
 - All other cycle points
 - Power output

Transient system model

Boundary conditions:

- Cooling water flow rate & temperature
- Heat source input
- Generator load

PID loop controls:

- Turbocompressor speed
- Power turbine speed
- Compressor inlet pressure

Test Data Considered for System Simulation

HRHX performance

Turbocompressor control & performance

Power turbine control & performance

EPS100 Testing – Key Accomplishments

- System control and stability fully demonstrated
- Component performances meet or exceed expectations
- Turbocompressor run to max power (3.0 MW shaft)
- Generator speed control stability demonstrated
- Power turbine electrical output = 3.10 MWe
 - Limited by available heat on test stand
- 310 hours turbocompressor run time
- 151 hours power turbine run time

Echogen's EPS30 System

- Multi-platform solution currently in final design stage
 - 1.35 MW rated output (net)
 - Commercial availability late 2016
 - Compatible with medium-speed diesels and small gas turbines
- Builds on prior Echogen technology development
 - Single-shaft, dual-coil HX architecture
 - Advanced hermetically-sealed turbine/compr/alternator assembly
 - Water cooled (1,800 gpm)
 - 60 Hz, 480V output
- Designed for marine installations
 - Easily adapted for land-based applications as well
 - Can replace water cooling with air cooling
- Designed for remote operation and minimal maintenance

Echogen Power Systems

High speed alternator – EPS30M product

- Motor-generator test in preparation
- Full speed, full load
- Test of windage & cooling models

- 1500kW permanent magnet alternator
- 25,000 RPM
- Combination water-cooled stator, CO₂ cooled rotor & stator

Summary

- sCO₂ offers significant advantages in numerous heat conversion applications
 - Waste/Exhaust heat technology offers a path to technology introduction in a market that is available today
 - Primary power opportunities limited at small scale, but can offer path to utility-scale
- Echogen sCO₂ heat engine technology delivering on the predicted system performance
- Test program provided key learnings, and insight into the challenges and opportunities of sCO₂ technology
 - Current test facility limited operational envelope
 - Working toward full power demonstration facility
- On the path to commercialization